IDEAS home Printed from https://ideas.repec.org/p/dar/wpaper/36060.html

Revenue management and demand fulfillment: matching applications, models, and software

Author

Listed:
  • Quante, R.
  • Meyr, H.
  • Fleischmann, M.

Abstract

Recent years have seen great successes of revenue management, notably in the airline, hotel, and car rental business. Currently, an increasing number of industries, including manufacturers and retailers, are exploring ways to adopt similar concepts. Software companies are taking an active role in promoting the broadening range of applications. Also technological advances, including smart shelves and radio frequency identification (RFID), are removing many of the barriers to extended revenue management. The rapid developments in Supply Chain Planning and Revenue Management software solutions, scientific models, and industry applications have created a complex picture, which appears not yet to be well understood. It is not evident which scientific models fit which industry applications and which aspects are still missing. The relation between available software solutions and applications as well as scientific models appears equally unclear. The goal of this paper is to help overcome this confusion. To this end, we structure and review three dimensions, namely applications, models, and software. Subsequently, we relate these dimensions to each other and highlight commonalities and discrepancies. This comparison also provides a basis for identifying future research needs.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Quante, R. & Meyr, H. & Fleischmann, M., 2009. "Revenue management and demand fulfillment: matching applications, models, and software," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36060, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
  • Handle: RePEc:dar:wpaper:36060
    Note: for complete metadata visit http://tubiblio.ulb.tu-darmstadt.de/36060/
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fleischmann, Moritz & Kloos, Konstantin & Nouri, Maryam & Pibernik, Richard, 2020. "Single-period stochastic demand fulfillment in customer hierarchies," European Journal of Operational Research, Elsevier, vol. 286(1), pages 250-266.
    2. Nicola Rennie & Catherine Cleophas & Adam M. Sykulski & Florian Dost, 2024. "Outlier detection in network revenue management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(2), pages 445-511, June.
    3. Konstantin Kloos & Richard Pibernik & Benedikt Schulte, 2019. "Allocation planning in sales hierarchies with stochastic demand and service-level targets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 981-1024, December.
    4. Martin Albrecht, 2021. "Component Allocation in Make-to-stock Assembly Systems," SN Operations Research Forum, Springer, vol. 2(2), pages 1-19, June.
    5. Catherine Cleophas & Jan Ehmke, 2014. "When Are Deliveries Profitable?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(3), pages 153-163, June.
    6. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    7. Alım, Muzaffer & Beullens, Patrick, 2020. "Joint inventory and distribution strategy for online sales with a flexible delivery option," International Journal of Production Economics, Elsevier, vol. 222(C).
    8. Lang, Magdalena A.K. & Cleophas, Catherine & Ehmke, Jan Fabian, 2021. "Multi-criteria decision making in dynamic slotting for attended home deliveries," Omega, Elsevier, vol. 102(C).
    9. Reinaldo Gomes & Ruxanda Godina Silva & Pedro Amorim, 2025. "Solving Logistical Challenges in Raw Material Reception: An Optimization and Heuristic Approach Combining Revenue Management Principles with Scheduling Techniques," Mathematics, MDPI, vol. 13(6), pages 1-21, March.
    10. Andrade, Xavier & Guimarães, Luís & Figueira, Gonçalo, 2021. "Product line selection of fast-moving consumer goods," Omega, Elsevier, vol. 102(C).
    11. Syed Asif Raza, 2020. "Price Differentiation and Inventory Decisions in a Socially Responsible Dual-Channel Supply Chain with Partial Information Stochastic Demand and Cannibalization," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
    12. Quante, R. & Fleischmann, M. & Meyr, H., 2009. "A Stochastic Dynamic Programming Approach to Revenue Management in a Make-to-Stock Production System," ERIM Report Series Research in Management ERS-2009-015-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Ionut Anica-Popa & Liana Anica-Popa & Cristina Radulescu & Marinela Vrincianu, 2021. "The Integration of Artificial Intelligence in Retail: Benefits, Challenges and a Dedicated Conceptual Framework," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(56), pages 120-120, February.
    14. Marketa Kubickova, 2022. "Revenue management in manufacturing: systematic review of literature," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 147-152, April.
    15. Staeblein, Thomas & Aoki, Katsuki, 2015. "Planning and scheduling in the automotive industry: A comparison of industrial practice at German and Japanese makers," International Journal of Production Economics, Elsevier, vol. 162(C), pages 258-272.

    More about this item

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G39 - Financial Economics - - Corporate Finance and Governance - - - Other
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dar:wpaper:36060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dekanatssekretariat (email available below). General contact details of provider: https://edirc.repec.org/data/ivthdde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.