IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1363.html
   My bibliography  Save this paper

Efficient Regression in Time Series Partial Linear Models

Author

Listed:

Abstract

This paper studies efficient estimation of partial linear regression in time series models. In particular, it combines two topics that have attracted a good deal of attention in econometrics, viz. spectral regression and partial linear regression, and proposes an efficient frequency domain estimator for partial linear models with serially correlated residuals. A nonparametric treatment of regression errors is permitted so that it is not necessary to be explicit about the dynamic specification of the errors other than to assume stationarity. A new concept of weak dependence is introduced based on regularity conditions on the joint density. Under these and some other regularity conditions, it is shown that the spectral estimator is root-n-consistent, asymptotically normal, and asymptotically efficient.

Suggested Citation

  • Peter C.B. Phillips & Binbin Guo & Zhijie Xiao, 2002. "Efficient Regression in Time Series Partial Linear Models," Cowles Foundation Discussion Papers 1363, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1363
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d13/d1363.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    3. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    4. Sargan, J D & Mikhail, W M, 1971. "A General Approximation to the Distribution of Instrumental Variables Estimates," Econometrica, Econometric Society, vol. 39(1), pages 131-169, January.
    5. Robert J. Shiller, 1982. "Smoothness Priors and Nonlinear Regression," NBER Technical Working Papers 0025, National Bureau of Economic Research, Inc.
    6. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    7. Engle, Robert F, 1974. "Band Spectrum Regression," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 1-11, February.
    8. Robinson, P M, 1991. "Automatic Frequency Domain Inference on Semiparametric and Nonparametric Models," Econometrica, Econometric Society, vol. 59(5), pages 1329-1363, September.
    9. Juhl, Ted & Xiao, Zhijie, 2005. "Partially Linear Models With Unit Roots," Econometric Theory, Cambridge University Press, vol. 21(05), pages 877-906, October.
    10. Corbae, Dean & Ouliaris, Sam & Phillips, Peter C B, 1994. "A Reexamination of the Consumption Function Using Frequency Domain Regressions," Empirical Economics, Springer, vol. 19(4), pages 595-609.
    11. Oliver Linton, 1997. "Second Order Approximation in a Linear Regression with Heteroskedasticity for Unknown Form," Cowles Foundation Discussion Papers 1151, Cowles Foundation for Research in Economics, Yale University.
    12. Corbae, Dean & Ouliaris, Sam & Phillips, Peter C B, 1994. "A Reexamination of the Consumption Function Using Frequency Domain Regressions," Empirical Economics, Springer, vol. 19(4), pages 595-609.
    13. Phillips, Peter C B, 1977. "A General Theorem in the Theory of Asymptotic Expansions as Approximations to the Finite Sample Distributions of Econometric Estimators," Econometrica, Econometric Society, vol. 45(6), pages 1517-1534, September.
    14. Xiao, Zhijie & Phillips, Peter C. B., 1998. "Higher-order approximations for frequency domain time series regression," Journal of Econometrics, Elsevier, vol. 86(2), pages 297-336, June.
    15. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.

    More about this item

    Keywords

    Efficient estimation; Partial linear regression; Spectral regression; Kernel estimation; Nonparametric; Semiparametric; Weak dependence;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1363. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.