IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/47005.html
   My bibliography  Save this paper

Switching the leverage switch

Author

Listed:
  • Marín Díazaraque, Juan Miguel
  • Romero, Eva
  • Lopes Moreira Da Veiga, María Helena

Abstract

This paper introduces a new asymmetric stochastic volatility model designed to capture how both the sign and magnitude of past shocks influence future volatility. The proposed Leverage Propagation Stochastic Volatility (LPSV) model extends traditional formulations by allowing the feedback mechanism to evolve over time, offering a more persistent and realistic representation of leverage effects than standard asymmetric stochastic volatility models. Based on the intuition that the impact of negative shocks on volatility unfolds gradually, rather than instantaneously, the model encodes this ``leverage propagation'' directly in its structure. Under Gaussian assumptions, we establish stationarity conditions and derive closed-form expressions for variance, kurtosis, and a novel leverage propagation function that quantifies delayed transmission of asymmetry. A Monte Carlo study confirms the robustness of Bayesian inference via Markov chain Monte Carlo (MCMC), even under heavy-tailed shocks. In empirical applications, the LPSV model captures volatility clustering and asymmetric persistence more effectively than competing alternatives, using daily financial returns from the German DAX and U.S. S&P 500. Moreover, the model captures prolonged volatility responses to non-financial shocks -illustrated through PM2.5 air pollution data from Madrid during Saharan dust events, demonstrating its broader relevance for environmental volatility modelling. These findings highlight the versatility of the model to trace the dynamics of delayed volatility sensitive to sign in different domains where understanding the persistence of risk is crucial.

Suggested Citation

  • Marín Díazaraque, Juan Miguel & Romero, Eva & Lopes Moreira Da Veiga, María Helena, 2025. "Switching the leverage switch," DES - Working Papers. Statistics and Econometrics. WS 47005, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:47005
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/8233a3c4-3087-4902-af28-4855795416c0/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    6. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    7. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    8. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    9. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    10. P. de Zea Bermudez & J. Miguel Marín & Helena Veiga, 2020. "Data cloning estimation for asymmetric stochastic volatility models," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1057-1074, November.
    11. Leopoldo Catania, 2022. "A Stochastic Volatility Model With a General Leverage Specification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 678-689, April.
    12. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
    13. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    14. Han Li & Kai Yang & Dehui Wang, 2019. "A threshold stochastic volatility model with explanatory variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 73(1), pages 118-138, February.
    15. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    16. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    17. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    18. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    19. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2016. "Bayesian Analysis of a Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 462-476, August.
    20. Dinghai Xu, 2010. "A Threshold Stochastic Volatility Model with Realized Volatility," Working Papers 1003, University of Waterloo, Department of Economics, revised May 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    2. P. de Zea Bermudez & J. Miguel Marín & Helena Veiga, 2020. "Data cloning estimation for asymmetric stochastic volatility models," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1057-1074, November.
    3. Mao, Xiuping & Ruiz Ortega, Esther & Lopes Moreira da Veiga, María Helena, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    5. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    6. Marín Díazaraque, Juan Miguel & Lopes Moreira da Veiga, María Helena, 2023. "Data cloning for a threshold asymmetric stochastic volatility model," DES - Working Papers. Statistics and Econometrics. WS 36569, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. Vo, Minh & Cohen, Michael & Boulter, Terry, 2015. "Asymmetric risk and return: Evidence from the Australian Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 558-573.
    11. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    12. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    13. Marín Díazaraque, Juan Miguel & Romero, Eva & Lopes Moreira da Veiga, María Helena, 2024. "A stochastic volatility model for volatility asymmetry and propagation," DES - Working Papers. Statistics and Econometrics. WS 43887, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Isabel Casas & Helena Veiga, 2021. "Exploring Option Pricing and Hedging via Volatility Asymmetry," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
    15. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    16. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    17. Mao, Xiuping & Ruiz, Esther & Veiga, Helena, 2017. "Threshold stochastic volatility: Properties and forecasting," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1105-1123.
    18. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    19. António Alberto Santos, 2015. "The evolution of the Volatility in Financial Returns: Realized Volatility vs Stochastic Volatility Measures," GEMF Working Papers 2015-10, GEMF, Faculty of Economics, University of Coimbra.
    20. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.

    More about this item

    Keywords

    Asymmetric volatility;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:47005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.