IDEAS home Printed from https://ideas.repec.org/p/csc/cerisp/201207.html
   My bibliography  Save this paper

Groundbreaking technological applications of nanotechnology in biomedicine: detecting emerging pathways from scientific and technological outputs

Author

Listed:

Abstract

The purpose of this paper is to measure and analyze the rate of scientific and technological advances of nano-technological research in biomedicine. The approach, based on models of growth, shows the current evolutionary trends of nano-research that may underpin future patterns of technological innovation in biomedicine. In particular, results show that biosensors, nanoparticles, quantum dots, carbon nanotube and nanomicelle have innovative applications in diagnostics and target therapies that have been generating a revolution in clinical practice. The present study also shows two main implications of determinants that have been supporting continuous application of nanotechnology in biomedicines such as the patterns of technological innovation driven by converging research fields and a learning process. These factors have been paving the way to innovative nanomedical drugs applied in biomedicine that lead to longer, better and healthier living of patients and therefore of societies.

Suggested Citation

  • Mario Coccia & Ugo Finardi, 2012. "Groundbreaking technological applications of nanotechnology in biomedicine: detecting emerging pathways from scientific and technological outputs," CERIS Working Paper 201207, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
  • Handle: RePEc:csc:cerisp:201207
    as

    Download full text from publisher

    File URL: https://www.byterfly.eu/islandora/object/librib:345057
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Chavarro & Puay Tang & Ismael Rafols, 2014. "Interdisciplinarity and research on local issues: evidence from a developing country," Research Evaluation, Oxford University Press, vol. 23(3), pages 195-209.
    2. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    3. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    4. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    5. Hackett, Edward J. & Leahey, Erin & Parker, John N. & Rafols, Ismael & Hampton, Stephanie E. & Corte, Ugo & Chavarro, Diego & Drake, John M. & Penders, Bart & Sheble, Laura & Vermeulen, Niki & Vision,, 2021. "Do synthesis centers synthesize? A semantic analysis of topical diversity in research," Research Policy, Elsevier, vol. 50(1).
    6. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    7. Xian Li & Ronald Rousseau & Liming Liang & Fangjie Xi & Yushuang Lü & Yifan Yuan & Xiaojun Hu, 2022. "Is low interdisciplinarity of references an unexpected characteristic of Nobel Prize winning research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2105-2122, April.
    8. Zuo, Zhiya & Zhao, Kang, 2018. "The more multidisciplinary the better? – The prevalence and interdisciplinarity of research collaborations in multidisciplinary institutions," Journal of Informetrics, Elsevier, vol. 12(3), pages 736-756.
    9. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    10. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    11. Yury Dranev & Maxim Kotsemir & Boris Syomin, 2018. "Diversity of research publications: relation to agricultural productivity and possible implications for STI policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1565-1587, September.
    12. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    13. Lina Xu & Steven Dellaportas & Zhiqiang Yang & Jin Wang, 2023. "More on the relationship between interdisciplinary accounting research and citation impact," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4779-4803, December.
    14. Lawson, Cornelia & Soós,Sándor, 2014. "A Thematic Mobility Measure for Econometric Analysis," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201408, University of Turin.
    15. Hiroko Nakamura & Shinji Suzuki & Tomobe Hironori & Yuya Kajikawa & Ichiro Sakata, 2011. "Citation lag analysis in supply chain research," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 221-232, May.
    16. Youtie, Jan & Rogers, Juan & Heinze, Thomas & Shapira, Philip & Tang, Li, 2013. "Career-based influences on scientific recognition in the United States and Europe: Longitudinal evidence from curriculum vitae data," Research Policy, Elsevier, vol. 42(8), pages 1341-1355.
    17. Xin Liu & Yi Bu & Ming Li & Jiang Li, 2024. "Monodisciplinary collaboration disrupts science more than multidisciplinary collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 75(1), pages 59-78, January.
    18. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    19. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "Structural indicators in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 451-460, May.
    20. Kim, Hyeyoung & Park, Hyelin & Song, Min, 2022. "Developing a topic-driven method for interdisciplinarity analysis," Journal of Informetrics, Elsevier, vol. 16(2).

    More about this item

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • I10 - Health, Education, and Welfare - - Health - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csc:cerisp:201207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Perin or Giancarlo Birello (email available below). General contact details of provider: https://edirc.repec.org/data/cerisit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.