IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2022-11.html
   My bibliography  Save this paper

Estimating dynamic systemic risk measures

Author

Listed:
  • Loïc Cantin

    (CREST, 5 Avenue Henri Le Chatelier, 91120 Palaiseau, France)

  • Christian Francq

    (CREST, 5 Avenue Henri Le Chatelier, 91120 Palaiseau, France)

  • Jean-Michel Zakoïan

    (CREST, 5 Avenue Henri Le Chatelier, 91120 Palaiseau, France)

Abstract

We propose a two-step semi-parametric estimation approach for dynamic Conditional VaR (CoVaR), from which other important systemic risk measures such as the Delta-CoVaR can be derived. The CoVaR allows to define reserves for a given financial entity, in order to limit exceeding losses when a system is in distress. We assume that all financial returns in the system follow semi-parametric GARCH-type models. Our estimation method relies on the fact that the dynamic CoVaR is the product of the volatility of the financial entity’s return and a conditional quantile term involving the innovations of the different returns. We show that the latter quantity can be easily estimated from residuals of the GARCH-type models estimated by Quasi-Maximum Likelihood (QML). The study of the asymptotic behaviour of the corresponding estimator and the derivation of asymptotic confidence intervals for the dymanic CoVaR are the main purposes of the paper. Our theoretical results are illustrated via Monte-Carlo experiments and real financial time series.

Suggested Citation

  • Loïc Cantin & Christian Francq & Jean-Michel Zakoïan, 2022. "Estimating dynamic systemic risk measures," Working Papers 2022-11, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2022-11
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2022-11.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    2. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    3. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2017. "A Justification of Conditional Confidence Intervals," Papers 1710.00643, arXiv.org, revised Jan 2019.
    4. Sylvain Benoît & Gilbert Colletaz & Christophe Hurlin & Christophe Pérignon, 2013. "A Theoretical and Empirical Comparison of Systemic Risk Measures," Working Papers halshs-00746272, HAL.
    5. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
    6. Christian Brownlees & Robert F. Engle, 2017. "SRISK: A Conditional Capital Shortfall Measure of Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 48-79.
    7. Christian Francq & Lajos Horváth & Jean-Michel Zakoïan, 2016. "Variance Targeting Estimation of Multivariate GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 353-382.
    8. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    9. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    10. Amengual, Dante & Fiorentini, Gabriele & Sentana, Enrique, 2013. "Sequential estimation of shape parameters in multivariate dynamic models," Journal of Econometrics, Elsevier, vol. 177(2), pages 233-249.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    2. Varotto, Simone & Zhao, Lei, 2018. "Systemic risk and bank size," Journal of International Money and Finance, Elsevier, vol. 82(C), pages 45-70.
    3. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    4. Peter Grundke, 2019. "Ranking consistency of systemic risk measures: a simulation-based analysis in a banking network model," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 953-990, May.
    5. Cipollini, Fabrizio & Giannozzi, Alessandro & Menchetti, Fiammetta & Roggi, Oliviero, 2020. "The beauty contest between systemic and systematic risk measures: Assessing the empirical performance," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 316-332.
    6. Tobias Fissler & Yannick Hoga, 2021. "Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability," Papers 2104.10673, arXiv.org, revised Feb 2022.
    7. Dissem, Sonia & Lobez, Frederic, 2020. "Correlation between the 2014 EU-wide stress tests and the market-based measures of systemic risk," Research in International Business and Finance, Elsevier, vol. 51(C).
    8. Gregory D. Maslak & Gonca Senel, 2023. "Bank Consolidation and Systemic Risk: M&A During the 2008 Financial Crisis," Journal of Financial Services Research, Springer;Western Finance Association, vol. 63(2), pages 201-220, April.
    9. Gehrig, Thomas & Iannino, Maria Chiara, 2021. "Did the Basel Process of capital regulation enhance the resiliency of European banks?," Journal of Financial Stability, Elsevier, vol. 55(C).
    10. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    12. Curcio, Domenico & Gianfrancesco, Igor & Vioto, Davide, 2023. "Climate change and financial systemic risk: Evidence from US banks and insurers," Journal of Financial Stability, Elsevier, vol. 66(C).
    13. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    14. Abendschein, Michael & Grundke, Peter, 2018. "On the ranking consistency of global systemic risk measures: empirical evidence," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181623, Verein für Socialpolitik / German Economic Association.
    15. Laura Nowzohour & Livio Stracca, 2020. "More Than A Feeling: Confidence, Uncertainty, And Macroeconomic Fluctuations," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 691-726, September.
    16. repec:zbw:bofitp:2020_013 is not listed on IDEAS
    17. Markus Brunnermeier & Simon Rother & Isabel Schnabel & Itay Goldstein, 2020. "Asset Price Bubbles and Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 4272-4317.
    18. Nong, Huifu & Yu, Ziliang & Li, Yang, 2024. "Financial shock transmission in China's banking and housing sectors: A network analysis," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 701-723.
    19. Caporin, Massimiliano & Garcia-Jorcano, Laura & Jimenez-Martin, Juan-Angel, 2021. "TrAffic LIght system for systemic Stress: TALIS3," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    20. Timo Dimitriadis & Yannick Hoga, 2022. "Dynamic CoVaR Modeling," Papers 2206.14275, arXiv.org, revised Feb 2024.
    21. Usman, Muhammad & Umar, Zaghum & Choi, Sun-Yong & Teplova, Tamara, 2024. "Quantifying endogenous and exogenous shocks to financial sector systemic risk: A comparison of GFC and COVID-19," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 281-293.

    More about this item

    Keywords

    conditional CoVaR and Delta-CoVaR; empirical distribution of bivariate residuals; model-free estimation risk; multivariate risks.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2022-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.