IDEAS home Printed from
   My bibliography  Save this paper

Adaptive Monte Carlo on Multivariate Binary Sampling Spaces


  • Nicolas Chopin


  • Christian Schafer



A Monte Carlo algorithm is said to be adaptive if it can adjust automaticallyits current proposal distribution, using past simulations. The choice of the para-metric family that defines the set of proposal distributions is critical for a goodperformance. We treat the problem of constructing such parametric families foradaptive sampling on multivariate binary spaces.A practical motivation for this problem is variable selection in a linear regres-sion context, where we need to either find the best model, with respect to somecriterion, or to sample from a Bayesian posterior distribution on the model space.In terms of adaptive algorithms, we focus on the Cross-Entropy (CE) method foroptimisation, and the Sequential Monte Carlo (SMC) methods for sampling.Raw versions of both SMC and CE algorithms are easily implemented using bi-nary vectors with independent components. However, for high-dimensional modelchoice problems, these straightforward proposals do not yields satisfactory re-sults. The key to advanced adaptive algorithms are binary parametric familieswhich take at least the linear dependencies between components into account.We review suitable multivariate binary models and make them work in thecontext of SMC and CE. Extensive computational studies on real life data with ahundred covariates seem to prove the necessity of more advanced binary families,to make adaptive Monte Carlo procedures efficient. Besides, our numerical resultsencourage the use of SMC and CE methods as alternatives to techniques basedon Markov chain exploration.

Suggested Citation

  • Nicolas Chopin & Christian Schafer, 2010. "Adaptive Monte Carlo on Multivariate Binary Sampling Spaces," Working Papers 2010-24, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2010-24

    Download full text from publisher

    File URL:
    File Function: Crest working paper version
    Download Restriction: no

    References listed on IDEAS

    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    3. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    4. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 497-529.
    5. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    6. Gotz, Glenn A. & McCall, John J., 1980. "Estimation in sequential decisionmaking models : A methodological note," Economics Letters, Elsevier, vol. 6(2), pages 131-136.
    7. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    8. Wolpin, Kenneth I, 1984. "An Estimable Dynamic Stochastic Model of Fertility and Child Mortality," Journal of Political Economy, University of Chicago Press, vol. 92(5), pages 852-874, October.
    9. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2010-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sri Srikandan) or (Christopher F Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.