IDEAS home Printed from https://ideas.repec.org/p/crd/wpaper/11001.html
   My bibliography  Save this paper

Efficient estimation of parameters in marginals in semiparametric multivariate models

Author

Listed:
  • Valentyn Panchenko

    (University of New South Wales)

  • Artem Prokhorov

    (Concordia University and CIREQ)

Abstract

Recent literature on semiparametric copula models focused on the situation when the marginals are specified nonparametrically and the copula function is given a parametric form. For example, this setup is used in Chen, Fan and Tsyrennikov (2006) [Efficient Estimation of Semiparametric Multivariate Copula Models, JASA] who focus on efficient estimation of copula parameters. We consider a reverse situation when the marginals are specified parametrically and the copula function is modelled nonparametrically. This setting is no less relevant in applications. We use the method of sieve for efficient estimation of parameters in marginals, derive its asymptotic distribution and show that the estimator is semiparametrically efficient. Simulations suggest that the sieve MLE can be up to 40% more efficient relative to QMLE depending on the strength of dependence between the marginals. An application using insurance company loss and expense data demonstrates empirical relevance of this setting.

Suggested Citation

  • Valentyn Panchenko & Artem Prokhorov, 2011. "Efficient estimation of parameters in marginals in semiparametric multivariate models," Working Papers 11001, Concordia University, Department of Economics.
  • Handle: RePEc:crd:wpaper:11001
    as

    Download full text from publisher

    File URL: http://alcor.concordia.ca/~aprokhor/papers/sieve.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichen Gao & Yu Zhang & Ximing Wu, 2015. "Penalized exponential series estimation of copula densities with an application to intergenerational dependence of body mass index," Empirical Economics, Springer, vol. 48(1), pages 61-81, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crd:wpaper:11001. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Economics Department). General contact details of provider: http://edirc.repec.org/data/deconca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.