IDEAS home Printed from https://ideas.repec.org/p/com/wpaper/028.html
   My bibliography  Save this paper

Fuzzy clustering of univariate and multivariate time series by genetic multiobjective optimization

Author

Listed:
  • S. Bandyopadhyay
  • R. Baragona
  • U. Maulik

Abstract

Given a set of time series, it is of interest to discover subsets that share similar properties. For instance, this may be useful for identifying and estimating a single model that may fit conveniently several time series, instead of performing the usual identification and estimation steps for each one. On the other hand time series in the same cluster are related with respect to the measures assumed for cluster analysis and are suitable for building multivariate time series models. Though many approaches to clustering time series exist, in this view the most effective method seems to have to rely on choosing some features relevant for the problem at hand and seeking for clusters according to their measurements, for instance the autoregressive coe±cients, spectral measures or the eigenvectors of the covariance matrix. Some new indexes based on goodnessof-fit criteria will be proposed in this paper for fuzzy clustering of multivariate time series. A general purpose fuzzy clustering algorithm may be used to estimate the proper cluster structure according to some internal criteria of cluster validity. Such indexes are known to measure actually definite often conflicting cluster properties, compactness or connectedness, for instance, or distribution, orientation, size and shape. It is argued that the multiobjective optimization supported by genetic algorithms is a most effective choice in such a di±cult context. In this paper we use the Xie-Beni index and the C-means functional as objective functions to evaluate the cluster validity in a multiobjective optimization framework. The concept of Pareto optimality in multiobjective genetic algorithms is used to evolve a set of potential solutions towards a set of optimal non-dominated solutions. Genetic algorithms are well suited for implementing di±cult optimization problems where objective functions do not usually have good mathematical properties such as continuity, differentiability or convexity. In addition the genetic algorithms, as population based methods, may yield a complete Pareto front at each step of the iterative evolutionary procedure. The method is illustrated by means of a set of real data and an artificial multivariate time series data set.

Suggested Citation

  • S. Bandyopadhyay & R. Baragona & U. Maulik, 2010. "Fuzzy clustering of univariate and multivariate time series by genetic multiobjective optimization," Working Papers 028, COMISEF.
  • Handle: RePEc:com:wpaper:028
    as

    Download full text from publisher

    File URL: http://comisef.eu/files/wps028.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    2. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    3. Roberto Baragona & Francesco Battaglia & Claudio Calzini, 2001. "Clustering of time series with genetic algorithms," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 111-128.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Fuzzy clustering; Internal criteria of cluster validity; Genetic algorithms; Multiobjective optimization; Time series; Pareto optimality;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:com:wpaper:028. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anil Khuman). General contact details of provider: http://www.comisef.eu .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.