IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimized U-type Designs on Flexible Regions

Listed author(s):
  • Dennis K.J. Lin
  • Chris Sharpe
  • Peter Winker

The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest is analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. This paper investigates the generation of design points on a flexible region. It uses a recently proposed new measure of discrepancy for this purpose, the Central Composite Discrepancy. The optimization heuristic Threshold Accepting is used to generate low discrepancy Utype designs. The proposed algorithm is capable to construct optimal U-type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two dimensional case indicate that using an optimization heuristic in combination with an appropriate discrepancy measure, it is possible to produce high quality experimental designs on flexible regions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by COMISEF in its series Working Papers with number 013.

in new window

Length: 23 pages
Date of creation: 20 Aug 2009
Handle: RePEc:com:wpaper:013
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
  2. Winker, Peter & Fang, Kai-Tai, 1995. "Application of threshold accepting to the evaluation of the discrepancy of a set of points," Discussion Papers, Series II 248, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
  3. Winker, Peter, 2005. "The Stochastics of Threshold Accepting: Analysis of an Application to the Uniform Design Problem," Discussion Papers 2005,003E, University of Erfurt, Faculty of Economics, Law and Social Sciences.
  4. Chuang, S.C. & Hung, Y.C., 2010. "Uniform design over general input domains with applications to target region estimation in computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 219-232, January.
  5. Huang, Mong-Na Lo & Lee, Chuan-Pin & Chen, Ray-Bing & Klein, Thomas, 2010. "Exact D-optimal designs for a second-order response surface model on a circle with qualitative factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 516-530, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:com:wpaper:013. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anil Khuman)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.