IDEAS home Printed from
   My bibliography  Save this paper

Information Content of Volatility Forecasts at Medium-term Horizons


  • John Galbraith
  • Turgut Kisinbay


Using realized volatility to estimate daily conditional volatility of financial returns, we compare forecasts of daily volatility from standard QML-estimated GARCH models, and from projections on past realized volatilities obtained from high-frequency data. We consider horizons extending to thirty trading days. The forecasts are compared with the unconditional sample variance of daily returns treated as a daily volatility forecast, allowing us to estimate the maximum horizon at which the model-based forecasts provide forecasting power, measured by MSE reduction. Using data from a Toronto Stock Exchange equity index and foreign exchange returns (DM/$US and Yen/$US), we find evidence of forecasting power at horizons of up to thirty trading days, on each of the three financial returns series. We also find some evidence that the result of (e.g.) Bollerslev and Wright (2001), that projections on past realized volatility provide better 1-step forecasts than the QML-GARCH forecasts, appears to extend to longer horizons up to around ten to fifteen trading days. At longer horizons, there appears to be little to distinguish the forecast methods. En utilisant la volatilité réalisée pour estimer la volatilité conditionnelle quotidienne des rendements financiers, nous comparons les prévisions de volatilité quotidienne effectuées à partir de modèles GARCH-QVM standard et à partir de projections directes sur les volatilités réalisées. Nous considérons un horizon maximal de trente jours de transaction. Les prévisions sont comparées à la variance non conditionnelle des rendements quotidiens, ce qui nous permet d'estimer l'horizon maximal pour lequel les modèles détiennent un pouvoir de prévision. Nous utilisons des données de l'indice TSE 35 et des taux de change DM/US$ et Yen/US$, et nos résultats montrent qu'il y a un pouvoir de prédiction jusqu'à un horizon de trente jours, et ce, pour chacune des trois séries. Nous montrons aussi que le résultat de Bollerslev et Wright (2001), résultat indiquant que les projections sont supérieures sur l'horizon d'un jour, reste valide dans un horizon s'étendant jusqu'à dix ou quinze jours. Pour des horizons plus longs, les deux types de méthodes de prévision ne se différencient guère.

Suggested Citation

  • John Galbraith & Turgut Kisinbay, 2002. "Information Content of Volatility Forecasts at Medium-term Horizons," CIRANO Working Papers 2002s-21, CIRANO.
  • Handle: RePEc:cir:cirwor:2002s-21

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Nathalie de Marcellis-Warin & Erwann Michel-Kerjan, 2001. "The Public-Private Sector Risk-Sharing in the French Insurance "Cat. Nat. System"""," CIRANO Working Papers 2001s-60, CIRANO.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:lan:wpaper:592830 is not listed on IDEAS
    2. Turgut Kısınbay, 2010. "Predictive ability of asymmetric volatility models at medium-term horizons," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3813-3829.

    More about this item


    GARCH; high-frequency data; integrated volatility; realized volatility; GARCH; données à haute fréquence; volatilité intégrée; volatilité réalisée;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2002s-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.