IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf249.html
   My bibliography  Save this paper

On Approximation of the Solutions to Partial Differential Equations in Finance

Author

Listed:
  • Akihiko Takahashi

    (Faculty of Economics, University of Tokyo)

  • Toshihiro Yamada

    (Mitsubishi UFJ Trust Investment Technology Institute Co.,Ltd. (MTEC))

Abstract

This paper proposes a general approximation method for the solutions to second-order parabolic partial differential equations (PDEs) widely used in finance through an extension of L'eandre's approach(L'eandre (2006,2008)) and the Bismut identiy(e.g. chapter IX-7 of Malliavin (1997)) in Malliavin calculus. We show two types of its applications, new approximations of derivatives prices and short-time asymptotic expansions of the heat kernel. In particular, we provide new approximation formulas for plain-vanilla and barrier option prices under stochastic volatility models. We also derive short-time asymptotic expansions of the heat kernel under general time-homogenous local volatility and local-stochastic volatility models in finance which include Heston (Heston (1993)) and (ă-)SABR models (Hagan et.al. (2002), Labordere (2008)) as special cases. Some numerical examples are shown.

Suggested Citation

  • Akihiko Takahashi & Toshihiro Yamada, 2012. "On Approximation of the Solutions to Partial Differential Equations in Finance," CARF F-Series CARF-F-249, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Mar 2012.
  • Handle: RePEc:cfi:fseres:cf249
    as

    Download full text from publisher

    File URL: http://www.carf.e.u-tokyo.ac.jp/pdf/workingpaper/fseries/259.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    2. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf249. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/catokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.