IDEAS home Printed from https://ideas.repec.org/p/cep/sticas/case152.html
   My bibliography  Save this paper

The distribution of total greenhouse gas emissions by households in the UK, and some implications for social policy

Author

Listed:
  • Saamah Abdallah
  • Ian Gough
  • Victoria Johnson
  • Josh Ryan-Collins
  • Cindy Smith

Abstract

This paper maps the distribution of total direct and embodied emissions of greenhouse gases by households in the UK and goes on to analyse their main drivers. Previous research has studied the distribution of direct emissions by households, notably from domestic fuel and electricity, but this is the first to cover the indirect emissions embodied in the consumption of food, consumer goods and services, including imports. To study total emissions by British households we link an input-output model of the UK economy to the UK Expenditure and Food Survey. Results are presented as descriptive statistics followed by regression analysis. All categories of per capita emission rise with income which is the main driver. Two other variables are always significant: household composition, partly reflecting economies of scale in consumption and emissions in larger households, and employment status. This 'standard' model explains 35% of variation in total emissions, reflecting further variation within income groups and household types. We also compute the distribution of emissions derived from the consumption of welfare state services: here, lower income and pensioner households 'emit' more due to their greater use of these services. To take further account of the social implications of these findings, we first estimate emissions per £ of income. This shows a reverse slope with emissions per £ rising as one descends the income scale. The decline with income is especially acute for domestic energy, housing and food emissions, 'necessary' expenditures with a lower income elasticity of demand. Next, we move away from per capita emissions by assuming children under 14 emit half that of adults, which reduces disparities between household types. To implement personal carbon allowances, further research will be needed into the carbon allowances of children and single person households. Current government policies to raise carbon prices mainly in domestic energy are found to be especially regressive, but tracking total carbon consumption within a country would require radical changes in monitoring carbon flows at national borders. In the meantime, poorly targeted policies to compensate 'fuel poor' families should give way to more radical 'eco-social' policies, such as house retrofitting, coupled with 'social' tariffs for domestic energy.

Suggested Citation

  • Saamah Abdallah & Ian Gough & Victoria Johnson & Josh Ryan-Collins & Cindy Smith, 2011. "The distribution of total greenhouse gas emissions by households in the UK, and some implications for social policy," CASE Papers case152, Centre for Analysis of Social Exclusion, LSE.
  • Handle: RePEc:cep:sticas:case152
    as

    Download full text from publisher

    File URL: https://sticerd.lse.ac.uk/dps/case/cp/CASEpaper152.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jackson, Tim & Papathanasopoulou, Eleni, 2008. "Luxury or 'lock-in'? An exploration of unsustainable consumption in the UK: 1968 to 2000," Ecological Economics, Elsevier, vol. 68(1-2), pages 80-95, December.
    2. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    3. Wiedmann, Thomas & Minx, Jan & Barrett, John & Wackernagel, Mathis, 2006. "Allocating ecological footprints to final consumption categories with input-output analysis," Ecological Economics, Elsevier, vol. 56(1), pages 28-48, January.
    4. Vringer, Kees & Blok, Kornelis, 1995. "The direct and indirect energy requirements of households in the Netherlands," Energy Policy, Elsevier, vol. 23(10), pages 893-910, October.
    5. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    6. Ian Gough & Sam Marden, 2011. "Fiscal costs of climate mitigation programmes in the UK: A challenge for social policy?," CASE Papers case145, Centre for Analysis of Social Exclusion, LSE.
    7. repec:cep:sticas:/145 is not listed on IDEAS
    8. Giovanni Baiocchi & Jan Minx & Klaus Hubacek, 2010. "The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 50-72, January.
    9. Simon Dresner & Paul Ekins, 2006. "Economic instruments to improve UK home energy efficiency without negative social impacts," Fiscal Studies, Institute for Fiscal Studies, vol. 27(1), pages 47-74, March.
    10. Roberts, Simon, 2008. "Energy, equity and the future of the fuel poor," Energy Policy, Elsevier, vol. 36(12), pages 4471-4474, December.
    11. Kerkhof, Annemarie C. & Benders, Ren M.J. & Moll, Henri C., 2009. "Determinants of variation in household CO2 emissions between and within countries," Energy Policy, Elsevier, vol. 37(4), pages 1509-1517, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Dongha & Jeong, Jinook, 2016. "Electricity restructuring, greenhouse gas emissions efficiency and employment reallocation," Energy Policy, Elsevier, vol. 92(C), pages 468-476.
    2. Stratford, Beth, 2020. "The Threat of Rent Extraction in a Resource-constrained Future," Ecological Economics, Elsevier, vol. 169(C).
    3. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    4. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    5. Chatterton, T. & Anable, J. & Cairns, S. & Wilson, R.E., 2018. "Financial Implications of Car Ownership and Use: a distributional analysis based on observed spatial variance considering income and domestic energy costs," Transport Policy, Elsevier, vol. 65(C), pages 30-39.
    6. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    7. Ian Gough & Sam Marden, 2011. "Fiscal costs of climate mitigation programmes in the UK: A challenge for social policy?," CASE Papers case145, Centre for Analysis of Social Exclusion, LSE.
    8. Okushima, Shinichiro, 2021. "Energy poor need more energy, but do they need more carbon? Evaluation of people's basic carbon needs," Ecological Economics, Elsevier, vol. 187(C).
    9. Schuster, Antonia & Lindner, Michael & Otto, Ilona M., 2023. "Whose house is on fire? Identifying socio-demographic and housing characteristics driving differences in the UK household CO2 emissions," Ecological Economics, Elsevier, vol. 207(C).
    10. Lévay, Petra Zsuzsa & Goedemé, Tim & Verbist, Gerlinde, 2023. "Income and expenditure elasticity of household carbon footprints. Some methodological considerations," Ecological Economics, Elsevier, vol. 212(C).
    11. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    12. Damilola Adeyeye & Adeyemi Olusola & Israel Ropo Orimoloye & Sudhir Kumar Singh & Samuel Adelabu, 2023. "Carbon footprint assessment and mitigation scenarios: a benchmark model for GHG indicator in a Nigerian University," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1361-1382, February.
    13. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    14. Franziska Klein & Jeroen van den Bergh, 2021. "The employment double dividend of environmental tax reforms: exploring the role of agent behaviour and social interaction," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 10(2), pages 189-213, April.
    15. Nicholas Bardsley & Milena Büchs & Sylke V Schnepf, 2017. "Something from nothing: Estimating consumption rates using propensity scores, with application to emissions reduction policies," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    16. Druckman, Angela & Buck, Ian & Hayward, Bronwyn & Jackson, Tim, 2012. "Time, gender and carbon: A study of the carbon implications of British adults' use of time," Ecological Economics, Elsevier, vol. 84(C), pages 153-163.
    17. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    18. Burgess, Martin, 2016. "Personal carbon allowances: A revised model to alleviate distributional issues," Ecological Economics, Elsevier, vol. 130(C), pages 316-327.
    19. Ulph, Alistair & Panzone, Luca & Hilton, Denis, 2023. "Do rational people sometimes act irrationally? A dynamic self-regulation model of sustainable consumer behavior," Economic Modelling, Elsevier, vol. 126(C).
    20. repec:cep:sticas:/145 is not listed on IDEAS
    21. Buchs, Milena & Schnepf, Sylke V., 2013. "UK Households' Carbon Footprint: A Comparison of the Association between Household Characteristics and Emissions from Home Energy, Transport and Other Goods and Services," IZA Discussion Papers 7204, Institute of Labor Economics (IZA).
    22. Carl Romanos & Suzi Kerr & Campbell Will, 2014. "Greenhouse Gas Emissions in New Zealand: A Preliminary Consumption-Based Analysis," Working Papers 14_05, Motu Economic and Public Policy Research.
    23. Johan Eyckmans & Sam Fankhauser & Snorre Kverndokk, 2013. "Equity, Development Aid and Climate Finance," GRI Working Papers 123, Grantham Research Institute on Climate Change and the Environment.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchs, Milena & Schnepf, Sylke V., 2013. "UK Households' Carbon Footprint: A Comparison of the Association between Household Characteristics and Emissions from Home Energy, Transport and Other Goods and Services," IZA Discussion Papers 7204, Institute of Labor Economics (IZA).
    2. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    3. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    4. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    5. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    6. Schaffrin, André & Reibling, Nadine, 2015. "Household energy and climate mitigation policies: Investigating energy practices in the housing sector," Energy Policy, Elsevier, vol. 77(C), pages 1-10.
    7. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    8. Lena Kilian & Anne Owen & Andy Newing & Diana Ivanova, 2022. "Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    9. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2013. "Turning lights into flights: Estimating direct and indirect rebound effects for UK households," Energy Policy, Elsevier, vol. 55(C), pages 234-250.
    10. Druckman, Angela & Jackson, Tim, 2010. "The bare necessities: How much household carbon do we really need?," Ecological Economics, Elsevier, vol. 69(9), pages 1794-1804, July.
    11. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    12. Mach, Radomír & Weinzettel, Jan & Ščasný, Milan, 2018. "Environmental Impact of Consumption by Czech Households: Hybrid Input–Output Analysis Linked to Household Consumption Data," Ecological Economics, Elsevier, vol. 149(C), pages 62-73.
    13. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    14. Druckman, Angela & Buck, Ian & Hayward, Bronwyn & Jackson, Tim, 2012. "Time, gender and carbon: A study of the carbon implications of British adults' use of time," Ecological Economics, Elsevier, vol. 84(C), pages 153-163.
    15. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    16. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    17. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    18. Longhi, Simonetta, 2015. "Residential energy expenditures and the relevance of changes in household circumstances," Energy Economics, Elsevier, vol. 49(C), pages 440-450.
    19. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    20. Rosa Duarte & Alfredo J. Mainar-Causapé & Julio Sánchez Chóliz, 2017. "Domestic GHG emissions and the responsibility of households in Spain: looking for regional differences," Applied Economics, Taylor & Francis Journals, vol. 49(53), pages 5397-5411, November.

    More about this item

    Keywords

    household income distribution; greenhouse gas emissions; carbon policies; social policies; direct and embodied emissions;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:sticas:case152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/case/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.