IDEAS home Printed from
   My bibliography  Save this paper

Can the Stock Market be Linearized?


  • Politis, D N


The evolution of financial markets is a complicated real-world phenomenon that ranks at the top in terms o fdifficulty of modeling and/or prediction. One reason for this difficulty is the well-documented nonlinearity that is inherently at work. The state-of-the-art on the nonlinear modeling of financial returns is given by the popular ARCH (Auto-Regressive Conditional Heteroskedasticity) models and their generalization but they all have their short-comings. Foregoing the goal of finding the "best" model, we propose an exploratory, model-free approach in trying to understand this difficult type of data. In particular, we propose to transform the problem into a more manageable setting such as the setting of linearity. The form and properties of such a transformation are given, and the issue of one-step-ahead prediction using the new approach is explicitly addressed.

Suggested Citation

  • Politis, D N, 2006. "Can the Stock Market be Linearized?," University of California at San Diego, Economics Working Paper Series qt8th5q5hq, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt8th5q5hq

    Download full text from publisher

    File URL:;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    3. Dimitris N. Politis, 2004. "A Heavy-Tailed Distribution for ARCH Residuals with Application to Volatility Prediction," Annals of Economics and Finance, Society for AEF, vol. 5(2), pages 283-298, November.
    4. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    5. Politis, Dimitris N., 2004. "A heavy-tailed distribution for ARCH residuals with application to volatility prediction," University of California at San Diego, Economics Working Paper Series qt7r89639x, Department of Economics, UC San Diego.
    6. Politis, Dimitris N., 2003. "Model-Free Volatility Prediction," University of California at San Diego, Economics Working Paper Series qt0648834b, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    More about this item


    stock market; ARCH; finance;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt8th5q5hq. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.