IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt86j5c9pf.html
   My bibliography  Save this paper

Development of Integrated Meso/Microscale Traffic Simulation Software for Testing Fault Detection and Handling in AHS

Author

Listed:
  • Horowitz, Roberto

Abstract

In this report, we describe the research carried out under PATH Task Order 4208. The objective of this project was to bridge the gap between the Automated Highway System (AHS) simulators SmartAHS and SmartCAP, by implementing an integrated AHS micro-meso simulation environment for analyzing a large-scale AHS network. In fulfillment of this goal, a meso-microscale traffic simulator was developed that allows a stationary region of microsimulation to be defined within a larger, mesosimulated AHS. This simulator permits analysis of traffic behavior in situations where both vehicle-level (microscopic) and aggregate-flow (mesoscopic) effects are important, while avoiding the prohibitive computational cost of microsimulating a large-scale AHS. The accomplishments of this project, including the development of the meso-micro batch compiler, user interface, and a manual traffic extension to SmartCAP, are detailed in this report.

Suggested Citation

  • Horowitz, Roberto, 2004. "Development of Integrated Meso/Microscale Traffic Simulation Software for Testing Fault Detection and Handling in AHS," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt86j5c9pf, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt86j5c9pf
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/86j5c9pf.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    2. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolina Osorio & Krishna Kumar Selvam, 2017. "Simulation-Based Optimization: Achieving Computational Efficiency Through the Use of Multiple Simulators," Transportation Science, INFORMS, vol. 51(2), pages 395-411, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    2. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    3. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    5. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    6. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    7. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    8. Gao, Yang & Levinson, David, 2024. "A multi-stage spatial queueing model with logistic arrivals and departures consistent with the microscopic fundamental diagram and hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    9. Malachy Carey & Paul Humphreys & Marie McHugh & Ronan McIvor, 2018. "Consistency and Inconsistency Between the Fundamental Relationships on Which Different Traffic Assignment Models Are Based," Service Science, INFORMS, vol. 52(6), pages 1548-1569, December.
    10. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    11. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    12. Muskan Verma & Arvind Kumar Gupta & Sapna Sharma, 2024. "Traffic flow dynamics and oscillation control in conserved fractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-12, October.
    13. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    14. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    15. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    16. S. Waller & David Fajardo & Melissa Duell & Vinayak Dixit, 2013. "Linear Programming Formulation for Strategic Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 13(4), pages 427-443, December.
    17. Blumberg, Michal & Bar-Gera, Hillel, 2009. "Consistent node arrival order in dynamic network loading models," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 285-300, March.
    18. Perrine, Kenneth A. & Levin, Michael W. & Yahia, Cesar N. & Duell, Melissa & Boyles, Stephen D., 2019. "Implications of traffic signal cybersecurity on potential deliberate traffic disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 58-70.
    19. Zhang, Yihang & Ioannou, Petros A., 2018. "Stability analysis and variable speed limit control of a traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 31-65.
    20. Nie, Yu (Marco) & Zhang, H.M., 2008. "A variational inequality formulation for inferring dynamic origin-destination travel demands," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 635-662, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt86j5c9pf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.