IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt2t6773w7.html
   My bibliography  Save this paper

A Simulation-based Framework For The Analysis Of Traffic Networks Operating With Real-time Information

Author

Listed:
  • Jayakrishnan, R.
  • Cohen, Michael
  • Kim, John
  • Mahmassani, Hani S.
  • Hu, Ta-yin

Abstract

The focus of this research project was to develop a new simulation framework for analyzing traffic networks with Advanced Traveler Information Systems (ATIS) and/or Advanced Traffic Management Systems ( ATMS). The report describes the development of DYNASMART (DYnamic Network Assignment-Simulation Model for Advanced Road Telematics). The report is presented as follows: Chapter 1 discusses the simulation approach of DYNASMART and explains the traffic control features incorporated in it during the research. Chapter 2 discuss the simulations performed with a trial network with ATMS controls. Chapter 3 concentrates on the ATIS simulations on the Anaheim network. Results from the simulations of traffic management for special-events traffic from the Anaheim stadium are presented in Chapter 4, followed by overall conclusions.

Suggested Citation

  • Jayakrishnan, R. & Cohen, Michael & Kim, John & Mahmassani, Hani S. & Hu, Ta-yin, 1993. "A Simulation-based Framework For The Analysis Of Traffic Networks Operating With Real-time Information," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2t6773w7, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt2t6773w7
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2t6773w7.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Ran & David E. Boyce & Larry J. LeBlanc, 1993. "A New Class of Instantaneous Dynamic User-Optimal Traffic Assignment Models," Operations Research, INFORMS, vol. 41(1), pages 192-202, February.
    2. Mahmassani, Hani S. & Chang, Gang-Len, 1986. "Experiments with departure time choice dynamics of urban commuters," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 297-320, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Michael & Ma, Jingtao, 2008. "Developing Calibration Tools for Microscopic Traffic Simulation Final Report Part 1: Overview Methods and Guidelines on Project Scoping and Data Collection," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3hh8f7nz, Institute of Transportation Studies, UC Berkeley.
    2. Jayakrishnan, R. & Rathi, U. & Rindt, C. & Vaideeshwaran, G., 1996. "Enhancements To A Simulation Framework For Analyzing Urban Traffic Networks With Atis/atms," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2zq344n0, Institute of Transportation Studies, UC Berkeley.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    2. Ran, Bin & Hall, Randolph & Boyce, David E., 1995. "A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt84t190b3, Institute of Transportation Studies, UC Berkeley.
    3. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    4. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    5. Jou, Rong-Chang & Chen, Ke-Hong, 2013. "An application of cumulative prospect theory to freeway drivers’ route choice behaviours," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 123-131.
    6. Jiancheng Long & Hai-Jun Huang & Ziyou Gao & W. Y. Szeto, 2013. "An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem," Operations Research, INFORMS, vol. 61(5), pages 1134-1147, October.
    7. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    8. Sheu, Jiuh-Biing, 2006. "A composite traffic flow modeling approach for incident-responsive network traffic assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 461-478.
    9. Lam, William H. K. & Huang, Hai-Jun, 1995. "Dynamic user optimal traffic assignment model for many to one travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 243-259, August.
    10. Ran, Bin & Hall, Randolph W. & Boyce, David E., 1996. "A link-based variational inequality model for dynamic departure time/route choice," Transportation Research Part B: Methodological, Elsevier, vol. 30(1), pages 31-46, February.
    11. Schwanen, Tim & Ettema, Dick, 2009. "Coping with unreliable transportation when collecting children: Examining parents' behavior with cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 511-525, June.
    12. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    13. Carey, Malachy & Humphreys, Paul & McHugh, Marie & McIvor, Ronan, 2014. "Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 90-104.
    14. He, Sylvia Y., 2013. "Does flexitime affect choice of departure time for morning home-based commuting trips? Evidence from two regions in California," Transport Policy, Elsevier, vol. 25(C), pages 210-221.
    15. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    16. Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
    17. Jayakrishnan, R. & Tsai, Wei T. & Prashker, Joseph N. & Rajadhyaksha, Subodh, 1994. "A Faster Path-Based Algorithm for Traffic Assignment," University of California Transportation Center, Working Papers qt2hf4541x, University of California Transportation Center.
    18. Malachy Carey & Y. E. Ge & Mark McCartney, 2003. "A Whole-Link Travel-Time Model with Desirable Properties," Transportation Science, INFORMS, vol. 37(1), pages 83-96, February.
    19. Zhen Qian & H. Zhang, 2013. "A Hybrid Route Choice Model for Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 13(2), pages 183-203, June.
    20. Theo Arentze & Harry Timmermans, 2003. "Modeling learning and adaptation processes in activity-travel choice A framework and numerical experiment," Transportation, Springer, vol. 30(1), pages 37-62, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt2t6773w7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.