IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt84t190b3.html
   My bibliography  Save this paper

A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice

Author

Listed:
  • Ran, Bin
  • Hall, Randolph
  • Boyce, David E.

Abstract

The dynamic user-optimal (DUO) departure time and route choice problem is to determine travelers’ best departure times and route choices at each instant of time. In a previous paper, we presented a route-based two-level optimal control model for the DUO departure time/route choice problem. However, this model is not appropriate for large scale transportation networks because some degree of route enumeration is necessary to solve the model. In this paper, we present a link-based variational inequality (VI) formulation for the DUO departure time/route choice problem so that route enumeration can be avoided in both the formulation and the solution procedure. The model extends our previous VI model for the DUO route choice problem to the case where both departure time and route over a general road network must be chosen simultaneously. By proving the necessity and sufficiency of this VI, we establish the equivalence of the VI formulation and the link-based DUO departure time/route choice conditions.

Suggested Citation

  • Ran, Bin & Hall, Randolph & Boyce, David E., 1995. "A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt84t190b3, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt84t190b3
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/84t190b3.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Ran & David E. Boyce & Larry J. LeBlanc, 1993. "A New Class of Instantaneous Dynamic User-Optimal Traffic Assignment Models," Operations Research, INFORMS, vol. 41(1), pages 192-202, February.
    2. Nagurney, Anna, 1986. "Computational comparisons of algorithms for general asymmetric traffic equilibrium problems with fixed and elastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 20(1), pages 78-84, February.
    3. Hani Mahmassani & Robert Herman, 1984. "Dynamic User Equilibrium Departure Time and Route Choice on Idealized Traffic Arterials," Transportation Science, INFORMS, vol. 18(4), pages 362-384, November.
    4. Moshe Ben-Akiva & Andre de Palma & Pavlos Kanaroglou, 1986. "Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates," Transportation Science, INFORMS, vol. 20(3), pages 164-181, August.
    5. C. S. Fisk & D. E. Boyce, 1983. "Alternative Variational Inequality Formulations of the Network Equilibrium-Travel Choice Problem," Transportation Science, INFORMS, vol. 17(4), pages 454-463, November.
    6. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    7. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    8. Carlos F. Daganzo, 1985. "The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 19(1), pages 29-37, February.
    9. Hani S. Mahmassani & Gang-Len Chang, 1987. "On Boundedly Rational User Equilibrium in Transportation Systems," Transportation Science, INFORMS, vol. 21(2), pages 89-99, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran, Bin & Boyce, David E., 1995. "Ideal Dynamic User-Optimal Route Choice: A Link-Based Variational Inequality Formulation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3t4686x6, Institute of Transportation Studies, UC Berkeley.
    2. Ran, Bin & Hall, Randolph W. & Boyce, David E., 1996. "A link-based variational inequality model for dynamic departure time/route choice," Transportation Research Part B: Methodological, Elsevier, vol. 30(1), pages 31-46, February.
    3. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
    4. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    5. Y. Ge & B. Sun & H. Zhang & W. Szeto & Xizhao Zhou, 2015. "A Comparison of Dynamic User Optimal States with Zero, Fixed and Variable Tolerances," Networks and Spatial Economics, Springer, vol. 15(3), pages 583-598, September.
    6. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    7. Zhu, Zheng & Li, Xinwei & Liu, Wei & Yang, Hai, 2019. "Day-to-day evolution of departure time choice in stochastic capacity bottleneck models with bounded rationality and various information perceptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 168-192.
    8. Wen-Long Jin, 2020. "Stable Day-to-Day Dynamics for Departure Time Choice," Transportation Science, INFORMS, vol. 54(1), pages 42-61, January.
    9. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    10. Xinhua Mao & Jianwei Wang & Changwei Yuan & Wei Yu & Jiahua Gan, 2018. "A Dynamic Traffic Assignment Model for the Sustainability of Pavement Performance," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    11. Chai, Huajun, 2019. "Dynamic Traffic Routing and Adaptive Signal Control in a Connected Vehicles Environment," Institute of Transportation Studies, Working Paper Series qt9ng3z8vn, Institute of Transportation Studies, UC Davis.
    12. Moore, II, James E. & Kim, Geunyoung & Cho, Seongdil & Hu, Hsi-hwa & Xu, Rong, 1997. "Evaluating System ATMIS Technologies Via Rapid Estimation Of Network Flows: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c70f3d9, Institute of Transportation Studies, UC Berkeley.
    13. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    14. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    15. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    16. Mahdi Takalloo & Changhyun Kwon, 2019. "On the Price of Satisficing in Network User Equilibria," Papers 1911.07914, arXiv.org.
    17. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    18. Daniel, Joseph I, 1995. "Congestion Pricing and Capacity of Large Hub Airports: A Bottleneck Model with Stochastic Queues," Econometrica, Econometric Society, vol. 63(2), pages 327-370, March.
    19. Y. W. Xu & J. H. Wu & M. Florian & P. Marcotte & D. L. Zhu, 1999. "Advances in the Continuous Dynamic Network Loading Problem," Transportation Science, INFORMS, vol. 33(4), pages 341-353, November.
    20. Babak Javani & Abbas Babazadeh, 2020. "Path-Based Dynamic User Equilibrium Model with Applications to Strategic Transportation Planning," Networks and Spatial Economics, Springer, vol. 20(2), pages 329-366, June.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt84t190b3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.