IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt99q2m7rf.html
   My bibliography  Save this paper

Employment Density

Author

Listed:
  • Handy, Susan

Abstract

This project reviews and summarizes empirical evidence for a selection of transportation and land use policies, infrastructure investments, demand management programs, and pricing policies for reducing vehicle miles traveled (VMT) and greenhouse gas (GHG) emissions. The project explicitly considers social equity (fairness that accounts for differences in opportunity) and justice (equity of social systems) for the strategies and their outcomes. Each brief identifies the best available evidence in the peer-reviewed academic literature and has detailed discussions of study selection and methodological issues. VMT and GHG emissions reduction is shown by effect size, defined as the amount of change in VMT (or other measures of travel behavior) per unit of the strategy, e.g., a unit increase in density. Effect sizes can be used to predict the outcome of a proposed policy or strategy. They can be in absolute terms (e.g., VMT reduced), but are more commonly in relative terms (e.g., percent VMT reduced). Relative effect sizes are often reported as the percent change in the outcome divided by the percent change in the strategy, also called an elasticity.

Suggested Citation

  • Handy, Susan, 2025. "Employment Density," Institute of Transportation Studies, Working Paper Series qt99q2m7rf, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt99q2m7rf
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/99q2m7rf.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark R. Stevens, 2017. "Response to Commentaries on “Does Compact Development Make People Drive Less?”," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(2), pages 151-158, April.
    2. Mark R. Stevens, 2017. "Does Compact Development Make People Drive Less?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 7-18, January.
    3. Lei Zhang & Jin Hyun Hong & Arefeh Nasri & Qing Shen, 2012. "How built environment affects travel behavior: A comparative analysis of the connections between land use and vehicle miles traveled in US cities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 40-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Nodjomian, Adam T. & Kockelman, Kara, 2019. "How does the built environment affect interest in the ownership and use of self-driving vehicles?," Journal of Transport Geography, Elsevier, vol. 78(C), pages 115-134.
    3. Arefeh Nasri & Carlos Carrion & Lei Zhang & Babak Baghaei, 2020. "Using propensity score matching technique to address self-selection in transit-oriented development (TOD) areas," Transportation, Springer, vol. 47(1), pages 359-371, February.
    4. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    5. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    6. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    7. Li, Xiaomeng & Neal, Zachary P., 2022. "Are larger cities more central in urban networks: A meta-analysis," OSF Preprints y3s69, Center for Open Science.
    8. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    9. Bindong Sun & Rui Guo & Chun Yin, 2023. "Inequity on suburban campuses: University students disadvantaged in self‐improvement travel," Growth and Change, Wiley Blackwell, vol. 54(2), pages 404-420, June.
    10. Bautista-Hernández, Dorian Antonio & Trejo Nieto, Alejandra, 2024. "Who uses transit in the journey to work? Multimodality, equity, and planning implications in México City," Journal of Transport Geography, Elsevier, vol. 117(C).
    11. Chun Yin & Bindong Sun, 2020. "Does Compact Built Environment Help to Reduce Obesity? Influence of Population Density on Waist–Hip Ratio in Chinese Cities," IJERPH, MDPI, vol. 17(21), pages 1-16, October.
    12. Gao, Jiong & Ma, Shoufeng & Zou, Hongyang & Du, Huibin, 2023. "How does population agglomeration influence the adoption of new energy vehicles? Evidence from 290 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    13. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    14. Nazari, Fatemeh & Mohammadian, Abolfazl (Kouros), 2023. "Modeling vehicle-miles of travel accounting for latent heterogeneity," Transport Policy, Elsevier, vol. 133(C), pages 45-53.
    15. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    16. Boeing, Geoff & Riggs, William, 2022. "Converting One-Way Streets to Two-Way Streets to Improve Transportation Network Efficiency and Reduce Vehicle Distance Traveled," SocArXiv fyhbc, Center for Open Science.
    17. Zhao, Chuyun & Tang, Jinjun & Zeng, Yu & Li, Zhitao & Gao, Fan, 2023. "Understanding the spatio-temporally heterogeneous effects of built environment on urban travel emissions," Journal of Transport Geography, Elsevier, vol. 112(C).
    18. Manville, Michael & King, Hannah & Matute, Juan & Lau, Theodore, 2024. "Neighborhood change and transit ridership: Evidence from Los Angeles and Orange Counties," Journal of Transport Geography, Elsevier, vol. 121(C).
    19. Jixiang Liu & Longzhu Xiao, 2024. "Socioeconomic differences in effect size: predicting commuting mode choice of migrants and locals using a light gradient boosting approach," Transportation, Springer, vol. 51(1), pages 1-24, February.
    20. Charles Raux & Ayana Lamatkhanova & Lény Grassot, 2021. "Does the built environment shape commuting? The case of Lyon (France)," Post-Print halshs-03010833, HAL.

    More about this item

    Keywords

    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt99q2m7rf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.