IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt49g4h212.html
   My bibliography  Save this paper

Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based Greenhouse Gas Standards

Author

Listed:
  • Kendall, Alissa
  • Ambrose, Hanjiro
  • Maroney, Erik
  • Deng, Huijing

Abstract

In the United States, the transportation sector is responsible for 36% of greenhouse gas (GHG) emissions, with light-duty vehicles (LDVs) comprising the largest contribution. Globally, transportation is responsible for approximately 24% of energy-related GHG emissions, of which road transport constitutes over 70%. In addition to other measures, rapid and extensive deployment of renewable and energy-efficient technologies is seen as a crucial intervention necessary to reduce transportation sector emissions in coming decades. This report documents the cumulative results of the project and presents both published findings and ongoing research. To understand the potential for developing and implementing life cycle-based policies for LDVs we must first develop the appropriate modeling tools, and we must understand how LCA or life cycle thinking has been implemented in policy contexts in the past. Thus, the rest of this report is divided into sections that summarize the work conducted on (i) developing LCA sub-models that will be integrated in the coupled system dynamics and LCA model, (ii) a review of the global market for PEVs with a focus on U.S. and China and implications for materials and manufacturing, (iii) a review of LCA and life cycle thinking in policy in the United States and around the world, and implications for life cycle-based vehicle policy, and (iv) the development of a new life cycle inventory to demonstrate the feasibility of a summary of findings from a Transportation Research Board (TRB) workshop on this topic conducted in January 2017. View the NCST Project Webpage

Suggested Citation

  • Kendall, Alissa & Ambrose, Hanjiro & Maroney, Erik & Deng, Huijing, 2018. "Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based Greenhouse Gas Standards," Institute of Transportation Studies, Working Paper Series qt49g4h212, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt49g4h212
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/49g4h212.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabir A. Mamun & F. R. Islam & R. Haque & Aneesh A. Chand & Kushal A. Prasad & Krishneel K. Goundar & Krishneel Prakash & Sidharth Maharaj, 2022. "Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles," Sustainability, MDPI, vol. 14(5), pages 1-33, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheldon, Tamara L. & Dua, Rubal, 2018. "Gasoline savings from clean vehicle adoption," Energy Policy, Elsevier, vol. 120(C), pages 418-424.
    2. Burlig, Fiona PhD & Bushnell, James PhD & Rapson, David PhD & Wolfram, Catherine PhD, 2020. "Supercharged? Electricity Demand and the Electrification of Transportation in California," Institute of Transportation Studies, Working Paper Series qt9t62s2sd, Institute of Transportation Studies, UC Davis.
    3. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    4. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    5. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    6. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    7. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    8. Fournel, Jean-François, 2023. "Electric Vehicle Subsidies: Cost-Effectiveness and Emission Reductions," TSE Working Papers 23-1465, Toulouse School of Economics (TSE).
    9. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    10. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    11. Zunian Luo, 2022. "Powering Up a Slow Charging Market: How Do Government Subsidies Affect Charging Station Supply?," Papers 2210.14908, arXiv.org, revised Jan 2023.
    12. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    13. Manjunath, Archana & Gross, George, 2017. "Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)," Energy Policy, Elsevier, vol. 102(C), pages 423-429.
    14. Ambrose, Hanjiro, 2019. "Environmental and economic costs, benefits and uncertainties of vehicle electrification: a life cycle approach," Institute of Transportation Studies, Working Paper Series qt3bx6f16d, Institute of Transportation Studies, UC Davis.
    15. Lucas W. Davis & James M. Sallee, 2020. "Should Electric Vehicle Drivers Pay a Mileage Tax?," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 65-94.
    16. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    17. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    18. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    19. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.
    20. Robin Smit & Daniel William Kennedy, 2022. "Greenhouse Gas Emissions Performance of Electric and Fossil-Fueled Passenger Vehicles with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment," Sustainability, MDPI, vol. 14(6), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt49g4h212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.