IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt0x373679.html
   My bibliography  Save this paper

How Dock-less Electric Bike Share Influences Travel Behavior, Attitudes, Health, and Equity: Phase II

Author

Listed:
  • Fukushige, Tatsuya
  • Fitch, Dillon PhD
  • Handy, Susan

Abstract

Dock-less, electric bike-share services offer cities a new transportation option with the potential to improve environmental, social, and health outcomes. But these benefits accrue only if bike-share use replaces car travel. The purpose of this study is to examine factors influencing whether bike-share substitutes for driving and the degree to which and under what circumstances bike-share use reduces car travel. Major findings in this report include (1) bike-share in the Sacramento region most commonly substitutes for car and walking trips, (2) each bike in the Sacramento bike-share fleet reduces users’ VMT by an average of approximately 2.8 miles per day, (3) areas with a higher proportion of low-income households tend to use bike-share less, (4) bike-share availability appears to induce new trips to restaurants and shopping and for recreation, (5) bike-share trips from commercial and office areas were more likely to replace walking or transit trips, while bike-share trips from non-commercial areas (and trips to home or restaurants) were more likely to replace car trips, (6) expanding the bike-share service boundary at the same fleet density decreases system efficiency and VMT reductions per bike. Our result suggests the need for an efficient rebalancing strategy specific to areas by time of day to increase the service efficiency and its benefits. Further analysis of the data used in this study to examine questions such as how bike share can improve transit connections and factors inducing bike use at the individual level will contribute to the development of more robust models and provide additional insights for bike share operation strategies and policy implementation.

Suggested Citation

  • Fukushige, Tatsuya & Fitch, Dillon PhD & Handy, Susan, 2021. "How Dock-less Electric Bike Share Influences Travel Behavior, Attitudes, Health, and Equity: Phase II," Institute of Transportation Studies, Working Paper Series qt0x373679, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt0x373679
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0x373679.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    2. repec:cdl:itsdav:qt79v822k5 is not listed on IDEAS
    3. repec:cdl:itsdav:qt2x53m37z is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    2. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    3. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2022. "Spatiotemporal evolving patterns of bike-share mobility networks and their associations with land-use conditions before and after the COVID-19 outbreak," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    5. Fukushige, Tatsuya & Fitch, Dillon T. & Handy, Susan, 2022. "Can an Incentive-Based approach to rebalancing a Dock-less Bike-share system Work? Evidence from Sacramento, California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 181-194.
    6. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    7. Jian-gang Shi & Hongyun Si & Guangdong Wu & Yangyue Su & Jing Lan, 2018. "Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    8. Sebastian Rühmann & Stephan Leible & Tom Lewandowski, 2024. "Interpretable Bike-Sharing Activity Prediction with a Temporal Fusion Transformer to Unveil Influential Factors: A Case Study in Hamburg, Germany," Sustainability, MDPI, vol. 16(8), pages 1-32, April.
    9. Wang, Yacan & Yang, Ying & Wang, Jiaping & Douglas, Matthew & Su, Duan, 2021. "Examining the influence of social norms on orderly parking behavior of dockless bike-sharing users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 284-296.
    10. Fitzová, Hana & Kališ, Richard & Pařil, Vilém & Fila, Milan, 2024. "Entry and competition in the European bike-sharing industry," Transport Policy, Elsevier, vol. 149(C), pages 100-107.
    11. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    12. Gao, Kun & Yang, Ying & Li, Aoyong & Li, Junhong & Yu, Bo, 2021. "Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 89-103.
    13. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    14. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    15. Luqi Wang, 2018. "Barriers to Implementing Pro-Cycling Policies: A Case Study of Hamburg," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    16. Peiyu Yi & Feihu Huang & Jian Peng, 2019. "A Rebalancing Strategy for the Imbalance Problem in Bike-Sharing Systems," Energies, MDPI, vol. 12(13), pages 1-18, July.
    17. Kwiatkowski Michał Adam, 2018. "Urban Cycling as an Indicator of Socio-Economic Innovation and Sustainable Transport," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 23-32, December.
    18. Silva, Maria Clara Martins & Aloise, Daniel & Jena, Sanjay Dominik, 2024. "Data-driven prioritization strategies for inventory rebalancing in bike-sharing systems," Omega, Elsevier, vol. 129(C).
    19. Xavier Bach & Carme Miralles-Guasch & Oriol Marquet, 2023. "Spatial Inequalities in Access to Micromobility Services: An Analysis of Moped-Style Scooter Sharing Systems in Barcelona," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    20. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt0x373679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.