IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2096-d1044028.html
   My bibliography  Save this article

Spatial Inequalities in Access to Micromobility Services: An Analysis of Moped-Style Scooter Sharing Systems in Barcelona

Author

Listed:
  • Xavier Bach

    (Barcelona Institute for Regional and Metropolitan Studies, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
    Research Group on Mobility, Transportation and Territory (GEMOTT), Department of Geography, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain)

  • Carme Miralles-Guasch

    (Research Group on Mobility, Transportation and Territory (GEMOTT), Department of Geography, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
    Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain)

  • Oriol Marquet

    (Research Group on Mobility, Transportation and Territory (GEMOTT), Department of Geography, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
    Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain)

Abstract

Micromobility services hold substantial potential in terms of promoting shared and electric-powered mobility modes, however, little is known about their accessibility and what shapes their spatial coverage. These two issues are important to understand how socially equitable these modes can really be and how public policies should manage their implementation in urban areas. Hence, this study examines the determinants of the spatial coverage of four moped-style scooter sharing services (MSS) in Barcelona. The article examines the socio-territorial characteristics of the coverage areas of each MSS, as defined in 2019, together with the minimum area that operators had to provide service in 2020 according to the local regulation. For each MSS, a binomial generalized linear mixed model is employed to predict the odds of each cadastral parcel being covered by the service and analyzed the main spatial determinants associated with it. The results suggest that territorial coverage is defined by centrality, household disposable income, and topography, with low-accessibility areas consistently omitted from services. The conclusions underline the need for the public sector to participate in the design of spatial coverage areas of MSS to guarantee spatial equity and transportation justice and avoid private sector designs that systematically exclude less attractive areas.

Suggested Citation

  • Xavier Bach & Carme Miralles-Guasch & Oriol Marquet, 2023. "Spatial Inequalities in Access to Micromobility Services: An Analysis of Moped-Style Scooter Sharing Systems in Barcelona," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2096-:d:1044028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    3. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    4. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    5. Levy, Nadav & Golani, Chen & Ben-Elia, Eran, 2019. "An exploratory study of spatial patterns of cycling in Tel Aviv using passively generated bike-sharing data," Journal of Transport Geography, Elsevier, vol. 76(C), pages 325-334.
    6. Shaheen, Susan PhD & Cohen, Adam, 2019. "Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt00k897b5, Institute of Transportation Studies, UC Berkeley.
    7. Artur Jaworski & Maksymilian Mądziel & Hubert Kuszewski, 2022. "Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions," Energies, MDPI, vol. 15(6), pages 1-14, March.
    8. Sanders, Rebecca L. & Branion-Calles, Michael & Nelson, Trisalyn A., 2020. "To scoot or not to scoot: Findings from a recent survey about the benefits and barriers of using E-scooters for riders and non-riders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 217-227.
    9. Shaheen, Susan PhD & Cohen, Adam & Chan, Nelson & Bansal, Apaar, 2020. "Chapter 13 - Sharing strategies: carsharing, shared micromobility (bikesharing and scooter sharing), transportation network companies, microtransit, and other innovative mobility modes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0z9711dw, Institute of Transportation Studies, UC Berkeley.
    10. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    11. Mooney, Stephen J. & Hosford, Kate & Howe, Bill & Yan, An & Winters, Meghan & Bassok, Alon & Hirsch, Jana A., 2019. "Freedom from the station: Spatial equity in access to dockless bike share," Journal of Transport Geography, Elsevier, vol. 74(C), pages 91-96.
    12. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    13. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    14. Steve O’Hern & Nora Estgfaeller, 2020. "A Scientometric Review of Powered Micromobility," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    15. Álvaro Aguilera-García & Juan Gomez & Natalia Sobrino & Juan José Vinagre Díaz, 2021. "Moped Scooter Sharing: Citizens’ Perceptions, Users’ Behavior, and Implications for Urban Mobility," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    16. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    17. Marquet, Oriol & Miralles-Guasch, Carme, 2014. "Walking short distances. The socioeconomic drivers for the use of proximity in everyday mobility in Barcelona," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 210-222.
    18. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    19. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    20. Peters, Luke & MacKenzie, Don, 2019. "The death and rebirth of bikesharing in Seattle: Implications for policy and system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 208-226.
    21. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    22. Stefania Boglietti & Benedetto Barabino & Giulio Maternini, 2021. "Survey on e-Powered Micro Personal Mobility Vehicles: Exploring Current Issues towards Future Developments," Sustainability, MDPI, vol. 13(7), pages 1-34, March.
    23. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    24. Hu, Songhua & Xiong, Chenfeng & Liu, Zhanqin & Zhang, Lei, 2021. "Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 91(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Arias-Molinares & Juan Carlos García-Palomares & Gustavo Romanillos & Javier Gutiérrez, 2023. "Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools," Journal of Geographical Systems, Springer, vol. 25(3), pages 403-427, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    2. Kwiatkowski Michał Adam, 2018. "Urban Cycling as an Indicator of Socio-Economic Innovation and Sustainable Transport," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 23-32, December.
    3. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Akbari Majid & Zarghamfard Moslem & Hajisharifi Arezoo & Amir Entekhabi Shahram & Goodarzipour Sadrallah, 2022. "Modelling the Obstacles to using Bicycle Sharing Systems in the Tehran Metropolis: A Structural Analysis," Quaestiones Geographicae, Sciendo, vol. 41(2), pages 109-124, June.
    5. Younes, Hannah & Zou, Zhenpeng & Wu, Jiahui & Baiocchi, Giovanni, 2020. "Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 308-320.
    6. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "Measuring immediate impacts of a new mass transit system on an existing bike-share system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 20-39.
    7. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    8. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    9. Cai Jia & Yanyan Chen & Tingzhao Chen & Yanan Li & Luzhou Lin, 2022. "Evolutionary Game Analysis on Sharing Bicycles and Metro Strategies: Impact of Phasing out Subsidies for Bicycle–Metro Integration Model," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    10. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    11. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    12. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    13. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    14. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    15. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    16. Duran-Rodas, David & Villeneuve, Dominic & Pereira, Francisco C. & Wulfhorst, Gebhard, 2020. "How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 299-319.
    17. Qing Yu & Weifeng Li & Dongyuan Yang & Yingkun Xie, 2020. "Policy Zoning for Efficient Land Utilization Based on Spatio-Temporal Integration between the Bicycle-Sharing Service and the Metro Transit," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    18. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    19. Ma, Xinwei & Ji, Yanjie & Yang, Mingyuan & Jin, Yuchuan & Tan, Xu, 2018. "Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data," Transport Policy, Elsevier, vol. 71(C), pages 57-69.
    20. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2096-:d:1044028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.