IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt83v0m2zw.html
   My bibliography  Save this paper

Changing economics of China’s power system suggest that batteries and renewables may be a lower cost way to meet peak demand growth than coal

Author

Listed:
  • Kahrl, Fritz
  • Lin, Jiang

Abstract

Concerns around reliability in China's electricity sector have rekindled interest in a traditional solution: building more coal-fired generation. However, over the past decade China's electricity sector has seen significant changes in supply costs, demand patterns, and regulation and markets, with falling costs for renewable and storage generation, "peakier" demand, and the creation of wholesale markets. These changes suggest that traditional approaches to evaluating the economics of different supply options may be outdated. This paper illustrates how a net capacity cost metric - fixed costs minus net market revenues - might be a useful metric for evaluating supply options to meet peak demand growth in China. Using a simplified example with recent resource cost data, the paper illustrates how, with a net capacity cost metric, electricity storage and solar PV may be a more cost-effective option for meeting peak demand growth than coal-fired generation.

Suggested Citation

  • Kahrl, Fritz & Lin, Jiang, 2024. "Changing economics of China’s power system suggest that batteries and renewables may be a lower cost way to meet peak demand growth than coal," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt83v0m2zw, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt83v0m2zw
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/83v0m2zw.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kahrl, Fredrich & Williams, James H. & Hu, Junfeng, 2013. "The political economy of electricity dispatch reform in China," Energy Policy, Elsevier, vol. 53(C), pages 361-369.
    2. Abhyankar, Nikit & Lin, Jiang & Kahrl, Fredrich & Yin, Shengfei & Paliwal, Umed & Liu, Xu & Khanna, Nina & Phadke, Amol A & Luo, Qian, 2022. "Achieving an 80% Carbon Free Electricity System in China by 2035," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9183b502, Department of Agricultural & Resource Economics, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    2. Zhang, Yin-Fang & Gao, Ping, 2016. "Integrating environmental considerations into economic regulation of China's electricity sector," Utilities Policy, Elsevier, vol. 38(C), pages 62-71.
    3. Liu, Yang & Jiang, Zhigao & Guo, Bowei, 2022. "Assessing China’s provincial electricity spot market pilot operations: Lessons from Guangdong province," Energy Policy, Elsevier, vol. 164(C).
    4. Teng, Fei & Wang, Xin & Zhiqiang, LV, 2014. "Introducing the emissions trading system to China’s electricity sector: Challenges and opportunities," Energy Policy, Elsevier, vol. 75(C), pages 39-45.
    5. Hao Chen & Chi Kong Chyong & Jia-Ning Kang & Yi-Ming Wei, 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Working Papers EPRG 1819, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Geng, Wu & Ming, Zeng & Lilin, Peng & Ximei, Liu & Bo, Li & Jinhui, Duan, 2016. "China׳s new energy development: Status, constraints and reforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 885-896.
    7. Cheng, Chuntian & Chen, Fu & Li, Gang & Ristić, Bora & Mirchi, Ali & Qiyu, Tu & Madani, Kaveh, 2018. "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 682-693.
    8. Qin, Quande & Liu, Yuan & Huang, Jia-Ping, 2020. "A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China's power industry," Energy Economics, Elsevier, vol. 92(C).
    9. Hu, Junfeng & Kwok, Gabe & Xuan, Wang & Williams, James H. & Kahrl, Fredrich, 2013. "Using natural gas generation to improve power system efficiency in China," Energy Policy, Elsevier, vol. 60(C), pages 116-121.
    10. Cao, Jing & Ho, Mun S. & Ma, Rong & Zhang, Yu, 2024. "Transition from plan to market: Imperfect regulations in the electricity sector of China," Journal of Comparative Economics, Elsevier, vol. 52(2), pages 509-533.
    11. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).
    12. Mengjia Ren & Lee G. Branstetter & Brian K. Kovak & Daniel Erian Armanios & Jiahai Yuan, 2021. "Why Has China Overinvested in Coal Power?," The Energy Journal, , vol. 42(2), pages 113-134, March.
    13. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Zhang, Xiliang, 2016. "Case study of the constraints and potential contributions regarding wind curtailment in Northeast China," Energy, Elsevier, vol. 110(C), pages 55-64.
    14. Munnings, Clayton & Morgenstern, Richard & Wang, Zhongmin & Liu, Xu, 2014. "Assessing the Design of Three Pilot Programs for Carbon Trading in China," RFF Working Paper Series dp-14-36, Resources for the Future.
    15. Ding, Qingguo & Wang, Jianxiao & Zhang, Bing & Yu, Yang, 2023. "Economic burden of China's fairness regulations on power generation sector," Energy, Elsevier, vol. 278(C).
    16. Park, Musik & Wang, Zhiyuan & Li, Lanyu & Wang, Xiaonan, 2023. "Multi-objective building energy system optimization considering EV infrastructure," Applied Energy, Elsevier, vol. 332(C).
    17. Du, Limin & He, Yanan & Yan, Jianye, 2013. "The effects of electricity reforms on productivity and efficiency of China's fossil-fired power plants: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 804-812.
    18. Michael Davidson & Fredrich Kahrl & Valerie Karplus, 2016. "Towards a political economy framework for wind power: Does China break the mould?," WIDER Working Paper Series 032, World Institute for Development Economic Research (UNU-WIDER).
    19. Flavio Menezes & Xuemei Zhang, 2016. "Regulatory Incentives for a Low-Carbon Electricity Sector in China," Discussion Papers Series 562, School of Economics, University of Queensland, Australia.
    20. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.

    More about this item

    Keywords

    Economics; Applied Economics; Affordable and Clean Energy; Energy Modelling; Energy management; Energy systems;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt83v0m2zw. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.