IDEAS home Printed from https://ideas.repec.org/p/bon/boncrc/crctr224_2025_702.html

Fully Self-Justifiable Outcomes

Author

Listed:
  • Francesc Dilmé

Abstract

An equilibrium outcome of a game in extensive form is fully self-justifiable if it is supported by justifiable equilibria (McLennan, 1985) regardless of the order in which actions implausible under the given outcome are excluded. We show that the set of fully self-justifiable outcomes is non-empty and contains the set of sequentially stable outcomes (Dilmé, 2024). In signaling games, fully self-justifiable outcomes pass all the selection criteria in Cho and Kreps (1987). Full self-justifiability allows for the systematic use of the logic of selection criteria in signaling games to select equilibria in any finite extensive form game.

Suggested Citation

  • Francesc Dilmé, 2025. "Fully Self-Justifiable Outcomes," CRC TR 224 Discussion Paper Series crctr224_2025_702, University of Bonn and University of Mannheim, Germany.
  • Handle: RePEc:bon:boncrc:crctr224_2025_702
    as

    Download full text from publisher

    File URL: https://www.crctr224.de/research/discussion-papers/archive/dp702
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reny, Philip J, 1992. "Backward Induction, Normal Form Perfection and Explicable Equilibria," Econometrica, Econometric Society, vol. 60(3), pages 627-649, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Perea & Elias Tsakas, 2019. "Limited focus in dynamic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 571-607, June.
    2. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    3. Sandholm, William H. & Izquierdo, Segismundo S. & Izquierdo, Luis R., 2019. "Best experienced payoff dynamics and cooperation in the Centipede game," Theoretical Economics, Econometric Society, vol. 14(4), November.
    4. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
    5. Heifetz Aviad & Meier Martin & Schipper Burkhard C., 2021. "Prudent Rationalizability in Generalized Extensive-form Games with Unawareness," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 21(2), pages 525-556, June.
    6. Battigalli, Pierpaolo & Leonetti, Paolo & Maccheroni, Fabio, 2020. "Behavioral equivalence of extensive game structures," Games and Economic Behavior, Elsevier, vol. 121(C), pages 533-547.
    7. , & ,, 2013. "The order independence of iterated dominance in extensive games," Theoretical Economics, Econometric Society, vol. 8(1), January.
    8. Geir B. Asheim & Martin Dufwenberg, 2003. "Deductive Reasoning in Extensive Games," Economic Journal, Royal Economic Society, vol. 113(487), pages 305-325, April.
    9. Yiyin Cao & Chuangyin Dang, 2025. "A Characterization of Reny's Weakly Sequentially Rational Equilibrium through $\varepsilon$-Perfect $\gamma$-Weakly Sequentially Rational Equilibrium," Papers 2505.19496, arXiv.org.
    10. Srihari Govindan & Robert Wilson, 2012. "Axiomatic Equilibrium Selection for Generic Two‐Player Games," Econometrica, Econometric Society, vol. 80(4), pages 1639-1699, July.
    11. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2013. "Dynamic unawareness and rationalizable behavior," Games and Economic Behavior, Elsevier, vol. 81(C), pages 50-68.
    12. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C, 2011. "Prudent rationalizability in generalized extensive-form games," MPRA Paper 30220, University Library of Munich, Germany.
    13. Battigalli, Pierpaolo, 2003. "Rationalizability in infinite, dynamic games with incomplete information," Research in Economics, Elsevier, vol. 57(1), pages 1-38, March.
    14. Dufwenberg, Martin & Kirchsteiger, Georg, 2004. "A theory of sequential reciprocity," Games and Economic Behavior, Elsevier, vol. 47(2), pages 268-298, May.
    15. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    16. Françoise Forges & József Sákovics, 2022. "Tenable threats when Nash equilibrium is the norm," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(3), pages 589-605, November.
    17. Battigalli, Pierpaolo & Siniscalchi, Marciano, 1999. "Hierarchies of Conditional Beliefs and Interactive Epistemology in Dynamic Games," Journal of Economic Theory, Elsevier, vol. 88(1), pages 188-230, September.
    18. Man, Priscilla T.Y., 2012. "Forward induction equilibrium," Games and Economic Behavior, Elsevier, vol. 75(1), pages 265-276.
    19. Feinberg, Yossi, 2005. "Subjective reasoning--dynamic games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 54-93, July.
    20. Battigalli, Pierpaolo & Dufwenberg, Martin, 2009. "Dynamic psychological games," Journal of Economic Theory, Elsevier, vol. 144(1), pages 1-35, January.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bon:boncrc:crctr224_2025_702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CRC Office (email available below). General contact details of provider: https://www.crctr224.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.