IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Multiple test procedures and smile plots

Listed author(s):
  • Roger Newson


    (Guy's Hospital)

Scientists often have good reasons for wanting to calculate multiple confidence intervals and/or p-values, especially when scanning a genome. However, if we do this, then the probability of not observing at least one "significant" difference tends to fall, even if all null hypotheses are true. A skeptical public will rightly ask whether a difference is "significant" when considered as one of a large number of parameters estimated. This presentation demonstrates some solutions to this problem, using the unofficial Stata packages parmest and smileplot. The parmest package allows the calculation of Bonferroni-corrected or Sidak-corrected confidence intervals for multiple estimated parameters. The smileplot package contains two programs, multproc (which carries out multiple test procedures) and smileplot (which presents their results graphically by plotting the p-value on a reverse log scale on the vertical axis against the parameter estimate on the horizontal axis). A multiple test procedure takes, as input, a set of estimates and p-values, and rejects a subset (possibly empty) of the null hypotheses corresponding to these p-values. Multiple test procedures have traditionally controlled the family-wise error rate (FWER), typically enabling the user to be 95% confident that all the rejected null hypotheses are false, and that all the corresponding "discoveries" are real. The price of this confidence is that the power to detect a difference of a given size tends to zero as the number of measured parameters become large. Therefore, recent work has concentrated on procedures that control the false disco very rate (FDR), such as the Simes procedure and the Yekutieli-Benjamini procedure. FDR-controlling procedures attempt to control the number of false discoveries as a proportion of the number of true discoveries, typically enabling the user to be 95% confident that some of the discoveries are real, or 90% confident that most of the discoveries are real. This less stringent requirement causes power to "bottom out" at a non-zero level as the number of tests becomes large. The smileplot package offers a selection of multiple test procedures of both kinds.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2003 with number 16.

in new window

Date of creation: 16 Mar 2003
Handle: RePEc:boc:usug03:16
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Roger Newson, 2000. "A program for saving a model fit as a dataset," Stata Technical Bulletin, StataCorp LP, vol. 9(49).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:usug03:16. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.