IDEAS home Printed from
   My bibliography  Save this paper

An Inflation Forecasting Model for the Euro Area


  • Chauvin, V.
  • Devulder, A.


With the European economic integration, the understanding of inflation and inflationary pressures requires to analyse both the national level and the whole Euro area level. This is true in particular for the inflation forecasts that are carried out within the Eurosystem and published four times a year in the ECB Monthly Bulletin. For that purpose, the Banque de France is currently building tools for the Euro area in addition to those already in use for France. The present study puts forward a simple model of short-term developments (one year ahead) in inflation, as measured by the Harmonized Index of Consumer Prices (HICP) of the Euro area. This model does not take into account the feed-back effect of prices on activity, which should be considered in order to analyse medium-term price developments. It could hence be improved along these lines in the future. The model includes seven equations, explaining the total HICP of the Euro area and some of its sector-based sub-indexes (services, manufacturing sector, unprocessed food, processed food, energy and underlying inflation, defined as HICP inflation excluding unprocessed food and energy prices). It uses exogenous variables such as unit labour cost, import deflator, indicators of tightening in the labour market, or in the goods market, and indirect tax indicators. We have favoured an empirical approach rather than a strict compliance with theoretical models, paying particularly attention to the fit of the equations to the data. However, this model is able to provide relevant economic interpretations of recent price developments. Finally, we assess the forecasting performance of the model in traditional in-sample and out-of-sample rolling event evaluations. To do so, the forecasts were compared to the ones obtained from simple autoregressive equations, which are also commonly used to forecast short-term price developments. On the whole, the model provides more accurate forecasts than those provided by the autoregressive model, and a sector-based disaggregated approach outperforms a single equation to forecast total HICP. Part of this result may come from dummy variables that correspond to well identified shocks that improve both the econometric characteristics and forecast performance of the equations of our model.

Suggested Citation

  • Chauvin, V. & Devulder, A., 2008. "An Inflation Forecasting Model for the Euro Area," Working papers 192, Banque de France.
  • Handle: RePEc:bfr:banfra:192

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gianluigi Ferrucci & Rebeca Jiménez-Rodríguez & Luca Onorantea, 2012. "Food Price Pass-Through in the Euro Area: Non-Linearities and the Role of the Common Agricultural Policy," International Journal of Central Banking, International Journal of Central Banking, vol. 8(1), pages 179-218, March.
    2. Meyler, Aidan, 2009. "The pass through of oil prices into euro area consumer liquid fuel prices in an environment of high and volatile oil prices," Energy Economics, Elsevier, vol. 31(6), pages 867-881, November.
    3. L. De Charsonville & F. Ferrière & C. Jardet, 2017. "MAPI: Model for Analysis and Projection of Inflation in France," Working papers 637, Banque de France.
    4. Luca ONORANTE & Gianluigi FERRUCCI & Rebeca JIMÉNEZ-RODRÍGUEZ, "undated". "Food Price Pass-Through in the Euro Area: the Role of Asymmetries and Non-Linearities," EcoMod2010 259600125, EcoMod.
    5. Guglielmo Caporale & Luca Onorante & Paolo Paesani, 2012. "Inflation and inflation uncertainty in the euro area," Empirical Economics, Springer, vol. 43(2), pages 597-615, October.
    6. Ivan Kitov & Oleg Kitov, 2013. "Does Banque de France control inflation and unemployment?," Papers 1311.1097,

    More about this item


    Inflation ; Economic Modelling ; Forecast.;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:192. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael brassart). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.