IDEAS home Printed from
   My bibliography  Save this paper

Spatially Adaptive Bayesian P-Splines with Heteroscedastic Errors


  • Ciprian Crainiceanu

    (Johns Hokins Bloomberg School of Public Health, Department of Biostatistics)

  • David Ruppert

    (School of Operational Research & Industrial Engineering, Cornell University)

  • Raymond Carroll

    (Department of Statistics, Texas A&M University)


An increasingly popular tool for nonparametric smoothing are penalized splines (P-splines) which use low-rank spline bases to make computations tractable while maintaining accuracy as good as smoothing splines. This paper extends penalized spline methodology by both modeling the variance function nonparametrically and using a spatially adaptive smoothing parameter. These extensions have been studied before, but never together and never in the multivariate case. This combination is needed for satisfactory inference and can be implemented effectively by Bayesian \mbox{MCMC}. The variance process controlling the spatially-adaptive shrinkage of the mean and the variance of the heteroscedastic error process are modeled as log-penalized splines. We discuss the choice of priors and extensions of the methodology,in particular, to multivariate smoothing using low-rank thin plate splines. A fully Bayesian approach provides the joint posterior distribution of all parameters, in particular, of the error standard deviation and penalty functions. In the multivariate case we produce maps of the standard deviation and penalty functions. Our methodology can be implemented using the Bayesian software WinBUGS.

Suggested Citation

  • Ciprian Crainiceanu & David Ruppert & Raymond Carroll, 2004. "Spatially Adaptive Bayesian P-Splines with Heteroscedastic Errors," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1061, Berkeley Electronic Press.
  • Handle: RePEc:bep:jhubio:1061

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Andrew Gelman, 2004. "Prior distributions for variance parameters in hierarchical models," EERI Research Paper Series EERI_RP_2004_06, Economics and Econometrics Research Institute (EERI), Brussels.
    2. Andrew Gelman, 2004. "Prior distributions for variance parameters in hierarchical models," Econometrics 0404001, EconWPA.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    2. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:jhubio:1061. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.