IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v85y2023i2d10.1007_s10589-023-00462-7.html
   My bibliography  Save this article

Globally optimal univariate spline approximations

Author

Listed:
  • Robert Mohr

    (Karlsruhe Institute of Technology (KIT))

  • Maximilian Coblenz

    (Ludwigshafen University of Business and Society)

  • Peter Kirst

    (Wageningen University and Research (WUR))

Abstract

We revisit the problem of computing optimal spline approximations for univariate least-squares splines from a combinatorial optimization perspective. In contrast to most approaches from the literature we aim at globally optimal coefficients as well as a globally optimal placement of a fixed number of knots for a discrete variant of this problem. To achieve this, two different possibilities are developed. The first approach that we present is the formulation of the problem as a mixed-integer quadratically constrained problem, which can be solved using commercial optimization solvers. The second method that we propose is a branch-and-bound algorithm tailored specifically to the combinatorial formulation. We compare our algorithmic approaches empirically on both, real and synthetic curve fitting data sets from the literature. The numerical experiments show that our approach to tackle the least-squares spline approximation problem with free knots is able to compute solutions to problems of realistic sizes within reasonable computing times.

Suggested Citation

  • Robert Mohr & Maximilian Coblenz & Peter Kirst, 2023. "Globally optimal univariate spline approximations," Computational Optimization and Applications, Springer, vol. 85(2), pages 409-439, June.
  • Handle: RePEc:spr:coopap:v:85:y:2023:i:2:d:10.1007_s10589-023-00462-7
    DOI: 10.1007/s10589-023-00462-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00462-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00462-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. D. G. T. Denison & B. K. Mallick & A. F. M. Smith, 1998. "Automatic Bayesian curve fitting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 333-350.
    2. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    2. Goepp, Vivien & Bouaziz, Olivier & Nuel, Grégory, 2025. "Spline regression with automatic knot selection," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
    3. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    4. Hervé Cardot, 2002. "Local roughness penalties for regression splines," Computational Statistics, Springer, vol. 17(1), pages 89-102, March.
    5. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    6. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    7. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    8. Boracchi, Patrizia & Biganzoli, Elia & Marubini, Ettore, 2003. "Joint modelling of cause-specific hazard functions with cubic splines: an application to a large series of breast cancer patients," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 243-262, February.
    9. Basna, Rani & Nassar, Hiba & Podgórski, Krzysztof, 2022. "Data driven orthogonal basis selection for functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Cardot, Hervé, 2002. "Spatially Adaptive Splines for Statistical Linear Inverse Problems," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 100-119, April.
    11. Praveen Kumar Tripathi & Manika Agarwal & Satyanshu K. Upadhyay, 2024. "A Bayes analysis of autoregressive model having functional-coefficients and its application on exchange rate data," METRON, Springer;Sapienza Università di Roma, vol. 82(3), pages 363-391, December.
    12. Jang, Dongik & Oh, Hee-Seok, 2011. "Enhancement of spatially adaptive smoothing splines via parameterization of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1029-1040, February.
    13. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    14. Elcin Koc & Cem Iyigun & İnci Batmaz & Gerhard-Wilhelm Weber, 2014. "Efficient adaptive regression spline algorithms based on mapping approach with a case study on finance," Journal of Global Optimization, Springer, vol. 60(1), pages 103-120, September.
    15. Botts, Carsten H. & Daniels, Michael J., 2008. "A flexible approach to Bayesian multiple curve fitting," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5100-5120, August.
    16. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    17. Wai-Yin Poon & Hai-Bin Wang, 2014. "Multivariate partially linear single-index models: Bayesian analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 755-768, December.
    18. Pena, Daniel & Redondas, Dolores, 2006. "Bayesian curve estimation by model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 688-709, February.
    19. Kim, Daeju & Kawano, Shuichi & Ninomiya, Yoshiyuki, 2023. "Smoothly varying regularization," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    20. P.L. Davies & M. Meise, 2008. "Approximating data with weighted smoothing splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 207-228.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:85:y:2023:i:2:d:10.1007_s10589-023-00462-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.