IDEAS home Printed from https://ideas.repec.org/p/bde/wpaper/2535.html
   My bibliography  Save this paper

Simple Tests for the Correct Specification of Conditional Predictive Densities

Author

Listed:
  • Gergely Ganics

    (BANCO DE ESPAÑA)

  • Lluc Puig Codina

    (UNIVERSITY OF ALICANTE AND BANCO DE ESPAÑA)

Abstract

We propose a simplified framework for evaluating conditional predictive densities based on the probability integral transform (PIT). The approach accommodates a wide range of estimation schemes, including expanding and rolling windows, and applies to both stationary and non-stationary processes. By treating the PIT as a primitive, our approach enables researchers to apply widely used tests in settings where their validity was previously uncertain. Monte Carlo simulations demonstrate favorable size and power properties of the tests. In an empirical application, we show that incorporating stochastic volatility into an unobserved components model is essential for generating correctly calibrated density forecasts of US industrial production growth at both monthly and quarterly frequencies.

Suggested Citation

  • Gergely Ganics & Lluc Puig Codina, 2035. "Simple Tests for the Correct Specification of Conditional Predictive Densities," Working Papers 2535, Banco de España.
  • Handle: RePEc:bde:wpaper:2535
    DOI: https://doi.org/10.53479/40825
    as

    Download full text from publisher

    File URL: https://www.bde.es/f/webbe/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/25/Files/dt2535e.pdf
    File Function: First version, September 2025
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.53479/40825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Del Negro & Michele Lenza & Giorgio E. Primiceri & Andrea Tambalotti, 2020. "What's Up with the Phillips Curve?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 51(1 (Spring), pages 301-373.
    2. Jihyun Park & Andrey Sarantsev, 2024. "The VIX as Stochastic Volatility for Corporate Bonds," Papers 2410.22498, arXiv.org, revised Jan 2025.
    3. Jamie L. Cross & Chenghan Hou & Gary Koop, 2021. "Macroeconomic Forecasting with Large Stochastic Volatility in Mean VARs," Working Papers No 04/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    4. Matteo Mogliani & Anna Simoni, 2024. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Papers 2404.02671, arXiv.org, revised Nov 2024.
    5. Na Guo & Bo Zhang & Jamie L. Cross, 2022. "Time‐varying trend models for forecasting inflation in Australia," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 316-330, March.
    6. Boriss Siliverstovs, 2020. "Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts," Empirical Economics, Springer, vol. 58(1), pages 7-27, January.
    7. Arango-Castillo, Lenin & Orraca, María José & Molina, G. Stefano, 2023. "The global component of headline and core inflation in emerging market economies and its ability to improve forecasting performance," Economic Modelling, Elsevier, vol. 120(C).
    8. Yuntong Liu & Yu Wei & Yi Liu & Wenjuan Li, 2020. "Forecasting Oil Price by Hierarchical Shrinkage in Dynamic Parameter Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-12, December.
    9. Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
    10. Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
    11. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:2535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ángel Rodríguez. Electronic Dissemination of Information Unit. Research Department. Banco de España (email available below). General contact details of provider: https://edirc.repec.org/data/bdegves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.