IDEAS home Printed from https://ideas.repec.org/p/bcu/iefewp/iefewp68.html
   My bibliography  Save this paper

Optimizing the position of bike sharing stations. The Milan case

Author

Listed:
  • Edoardo Croci
  • Davide Rossi

Abstract

Bike Sharing systems are rapidly spreading around in European cities. Bike sharing is a new type of public transportation based on the use of public bikes to cover relatively short distances in urban areas. It is used both in conjunction with traditional public transport to complete the “last mile”, or in alternative for its flexibility. Usage fees are usually very low, compared to other means of transport, as costs of service are often covered by advertising. In this work we will focus on the case of Milan where the bike sharing system, called "BikeMi", was introduced in 2008 and has already reached over 200 stations and 3.000 bikes with 1.8 million travels in 2013. The aim of the paper is to assess which attractors influence the use of bike sharing stations. The paper also examines the different effect of proximity and visibility of bike sharing stations from attractors. An econometric analysis is performed, based on the data set of use of the system and on GIS information on the position of bike sharing stations and attractors. The main results suggest that the presence of metro and train stations, universities, museums, cinema and restricted traffic areas in correspondence of bike sharing stations significantly increase use. On the other hand the presence of tram and bus stops and theatres does not and has an opposite influence. With respect to visibility, there is a positive effect for tram, bus and metro stops, theatres and cinemas. On the other hand, universities and museums show a negative correlation. The results appear robust to the inclusion of time and other possible confounding variables, such as weather conditions. The analysis supports the relevance of the role of urban planning for the best positioning of bike sharing stations and the need to carefully consider the features of surrounding environment to optimise the distribution of bike sharing stations in a territory.

Suggested Citation

  • Edoardo Croci & Davide Rossi, 2014. "Optimizing the position of bike sharing stations. The Milan case," IEFE Working Papers 68, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
  • Handle: RePEc:bcu:iefewp:iefewp68
    as

    Download full text from publisher

    File URL: https://repec.unibocconi.it/iefe/bcu/papers/iefewp68.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    2. Susan Handy & Yan Xing & Theodore Buehler, 2010. "Factors associated with bicycle ownership and use: a study of six small U.S. cities," Transportation, Springer, vol. 37(6), pages 967-985, November.
    3. Meghan Winters & Gavin Davidson & Diana Kao & Kay Teschke, 2011. "Motivators and deterrents of bicycling: comparing influences on decisions to ride," Transportation, Springer, vol. 38(1), pages 153-168, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Caggiani & Rosalia Camporeale & Zahra Hamidi & Chunli Zhao, 2021. "Evaluating the Efficiency of Bike-Sharing Stations with Data Envelopment Analysis," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    2. Renata Żochowska & Marianna Jacyna & Marcin Jacek Kłos & Piotr Soczówka, 2021. "A GIS-Based Method of the Assessment of Spatial Integration of Bike-Sharing Stations," Sustainability, MDPI, vol. 13(7), pages 1-29, April.
    3. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    4. Jaller, Miguel & Qian, Xiaodong & Joby, Raina & Xiao, Runhua Ivan, 2023. "Optimizing Bikeshare Service to Connect Affordable Housing Units with Transit Service," Institute of Transportation Studies, Working Paper Series qt9mp4g0xz, Institute of Transportation Studies, UC Davis.
    5. Mete Suleyman & Cil Zeynel Abidin & Özceylan Eren, 2018. "Location and Coverage Analysis of Bike- Sharing Stations in University Campus," Business Systems Research, Sciendo, vol. 9(2), pages 80-95, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    2. Congbao Xu & Jing Wang & Yanxue Li & Weijun Gao, 2023. "Evaluation and Optimization Design of Coastal Cycling Environment Based on Importance Performance Analysis," SAGE Open, , vol. 13(3), pages 21582440231, August.
    3. Frondel, Manuel & Vance, Colin, 2017. "Cycling on the extensive and intensive margin: The role of paths and prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 21-31.
    4. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    5. Sohrabi, Soheil & Paleti, Rajesh & Balan, Lacramioara & Cetin, Mecit, 2020. "Real-time prediction of public bike sharing system demand using generalized extreme value count model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 325-336.
    6. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    7. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    8. Iwińska, Katarzyna & Blicharska, Malgorzata & Pierotti, Livia & Tainio, Marko & de Nazelle, Audrey, 2018. "Cycling in Warsaw, Poland – Perceived enablers and barriers according to cyclists and non-cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 291-301.
    9. José I. Castillo-Manzano & Mercedes Castro-Nuño & Lourdes Lopez-Valpuesta, 2015. "The relationship between public and private bicycle use: the case of Seville," ERSA conference papers ersa15p206, European Regional Science Association.
    10. Ravensbergen, Léa & Buliung, Ron & Laliberté, Nicole, 2020. "Fear of cycling: Social, spatial, and temporal dimensions," Journal of Transport Geography, Elsevier, vol. 87(C).
    11. Thigpen, Calvin, 2017. "The Reciprocal Relationship between Children and Young Adults' Travel Behavior and Their Travel Attitudes, Skills, and Norms," Institute of Transportation Studies, Working Paper Series qt383679dd, Institute of Transportation Studies, UC Davis.
    12. Sarah J. Bundy Kirkpatrick, 2018. "Pedaling disaster: citizen bicyclists in disaster response—Innovative solution or unnecessary effort?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 365-389, January.
    13. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    14. Jie Gao & Dick Ettema & Marco Helbich & Carlijn B. M. Kamphuis, 2019. "Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes?," Transportation, Springer, vol. 46(6), pages 2441-2463, December.
    15. Calvey, J.C. & Shackleton, J.P. & Taylor, M.D. & Llewellyn, R., 2015. "Engineering condition assessment of cycling infrastructure: Cyclists’ perceptions of satisfaction and comfort," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 134-143.
    16. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    17. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    18. Verma, Meghna & Rahul, T.M. & Reddy, Peesari Vamshidhar & Verma, Ashish, 2016. "The factors influencing bicycling in the Bangalore city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 29-40.
    19. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    20. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.

    More about this item

    Keywords

    bike sharing; sustainable mobility; urban mobility;
    All these keywords.

    JEL classification:

    • D04 - Microeconomics - - General - - - Microeconomic Policy: Formulation; Implementation; Evaluation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcu:iefewp:iefewp68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carlotta Milani (email available below). General contact details of provider: https://edirc.repec.org/data/eabocit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.