IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/05-45.html
   My bibliography  Save this paper

An Evaluation of MLE in a Model of the Nonlinear Continuous-Time Short-Term Interest Rate

Author

Listed:
  • Ingrid Lo

Abstract

The author compares the performance of three Gaussian approximation methods--by Nowman (1997), Shoji and Ozaki (1998), and Yu and Phillips (2001)--in estimating a model of the nonlinear continuous-time short-term interest rate. She finds that the performance of Nowman's method is similar to that of Shoji and Ozaki's method, whereas the window width used in the Yu and Phillips method has a critical influence on parameter estimates. When a small window width is used, the Yu and Phillips method does not outperform the other two methods. Choosing a suitable window width can reduce estimation bias quite significantly, whereas too large a window width can worsen estimation bias and the fit of the model. An empirical study is implemented using Canadian and U.K. one-month interest rate data.

Suggested Citation

  • Ingrid Lo, 2005. "An Evaluation of MLE in a Model of the Nonlinear Continuous-Time Short-Term Interest Rate," Staff Working Papers 05-45, Bank of Canada.
  • Handle: RePEc:bca:bocawp:05-45
    as

    Download full text from publisher

    File URL: http://www.bankofcanada.ca/wp-content/uploads/2010/02/wp05-45.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    3. Yacine Aït-Sahalia, 1999. "Transition Densities for Interest Rate and Other Nonlinear Diffusions," Journal of Finance, American Finance Association, vol. 54(4), pages 1361-1395, August.
    4. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    6. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    7. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
    8. Nowman, K B, 1997. " Gaussian Estimation of Single-Factor Continuous Time Models of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 52(4), pages 1695-1706, September.
    9. Jun Yu & Peter C.B. Phillips, 2001. "Gaussian Estimation of Continuous Time Models of the Short Term Interest Rate," Cowles Foundation Discussion Papers 1309, Cowles Foundation for Research in Economics, Yale University.
    10. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:finana:v:52:y:2017:i:c:p:119-129 is not listed on IDEAS

    More about this item

    Keywords

    Interest rates; Econometric and statistical methods;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:05-45. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.bank-banque-canada.ca/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.