IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0604311.html
   My bibliography  Save this paper

The Bismut-Elworthy-Li formula for jump-diffusions and applications to Monte Carlo pricing in finance

Author

Listed:
  • T. R. Cass
  • P. K. Friz

Abstract

We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and "payoff" functions depending on the process at multiple future times. In the spirit of Fournie et al [13] and Davis and Johansson [9] this can improve Monte Carlo numerics for stochastic volatility models with jumps. To this end one needs so-called Malliavin weights and we give explicit formulae valid in presence of jumps: (a) In a non-degenerate situation, the extended BEL formula represents possible Malliavin weights as Ito integrals with explicit integrands; (b) in a hypoelliptic setting we review work of Arnaudon and Thalmaier [1] and also find explicit weights, now involving the Malliavin covariance matrix, but still straight-forward to implement. (This is in contrast to recent work by Forster, Lutkebohmert and Teichmann where weights are constructed as anticipating Skorohod integrals.) We give some financial examples covered by (b) but note that most practical cases of poor Monte Carlo performance, Digital Cliquet contracts for instance, can be dealt with by the extended BEL formula and hence without any reliance on Malliavin calculus at all. We then discuss some of the approximations, often ignored in the literature, needed to justify the use of the Malliavin weights in the context of standard jump diffusion models. Finally, as all this is meant to improve numerics, we give some numerical results with focus on Cliquets under the Heston model with jumps.

Suggested Citation

  • T. R. Cass & P. K. Friz, 2006. "The Bismut-Elworthy-Li formula for jump-diffusions and applications to Monte Carlo pricing in finance," Papers math/0604311, arXiv.org, revised May 2007.
  • Handle: RePEc:arx:papers:math/0604311
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0604311
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    2. Eric Benhamou, 2002. "Smart Monte Carlo: Various tricks using Malliavin calculus," Finance 0212004, EconWPA.
    3. Eric Benhamou, 2002. "Smart Monte Carlo: various tricks using Malliavin calculus," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 329-336.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0604311. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.