IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Dynamical Behavior of Continuous Tick Data in Futures Exchange Market

Listed author(s):
  • Kyungsik Kim
  • Seong-Min Yoon

We study the tick dynamical behavior of the bond futures in Korean Futures Exchange(KOFEX) market. Since the survival probability in the continuous-time random walk theory is applied to the bond futures transaction, the form of the decay function in our bond futures model is discussed from two kinds of Korean Treasury Bond(KTB) transacted recently in KOFEX. The decay distributions for survival probability are particularly displayed stretched exponential forms with novel scaling exponents $\beta$ $=$ 0.82(KTB 203) and $\beta$ $=$ 0.90(KTB112), respectively, for our small time intervals. We obtain the scaling exponents for survival probability $\epsilon$ $=$ 17 and 18 decayed rapidly in large time limit, and our results are compared with recent numerical calculations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number cond-mat/0212393.

in new window

Date of creation: Dec 2002
Handle: RePEc:arx:papers:cond-mat/0212393
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0212393. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.