IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Markov properties of high frequency exchange rate data

  • C. Renner

    (University of Oldenburg)

  • J. Peinke

    (University of Oldenburg)

  • R. Friedrich

    (University of Stuttgart)

Registered author(s):

    We present a stochastic analysis of a data set consisiting of 10^6 quotes of the US Doller - German Mark exchange rate. Evidence is given that the price changes x(tau) upon different delay times tau can be described as a Markov process evolving in tau. Thus, the tau-dependence of the probability density function (pdf) p(x) on the delay time tau can be described by a Fokker-Planck equation, a gerneralized diffusion equation for p(x,tau). This equation is completely determined by two coefficients D_{1}(x,tau) and D_{2}(x,tau) (drift- and diffusion coefficient, respectively). We demonstrate how these coefficients can be estimated directly from the data without using any assumptions or models for the underlying stochastic process. Furthermore, it is shown that the solutions of the resulting Fokker-Planck equation describe the empirical pdfs correctly, including the pronounced tails.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/cond-mat/0102494
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number cond-mat/0102494.

    as
    in new window

    Length:
    Date of creation: Feb 2001
    Date of revision: Apr 2001
    Handle: RePEc:arx:papers:cond-mat/0102494
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    3. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0102494. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.