IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.17117.html
   My bibliography  Save this paper

Modified Delayed Acceptance MCMC for Quasi-Bayesian Inference with Linear Moment Conditions

Author

Listed:
  • Masahiro Tanaka

Abstract

We develop a computationally efficient framework for quasi-Bayesian inference based on linear moment conditions. The approach employs a delayed acceptance Markov chain Monte Carlo (DA-MCMC) algorithm that uses a surrogate target kernel and a proposal distribution derived from an approximate conditional posterior, thereby exploiting the structure of the quasi-likelihood. Two implementations are introduced. DA-MCMC-Exact fully incorporates prior information into the proposal distribution and maximizes per-iteration efficiency, whereas DA-MCMC-Approx omits the prior in the proposal to reduce matrix inversions, improving numerical stability and computational speed in higher dimensions. Simulation studies on heteroskedastic linear regressions show substantial gains over standard MCMC and conventional DA-MCMC baselines, measured by multivariate effective sample size per iteration and per second. The Approx variant yields the best overall throughput, while the Exact variant attains the highest per-iteration efficiency. Applications to two empirical instrumental variable regressions corroborate these findings: the Approx implementation scales to larger designs where other methods become impractical, while still delivering precise inference. Although developed for moment-based quasi-posteriors, the proposed approach also extends to risk-based quasi-Bayesian formulations when first-order conditions are linear and can be transformed analogously. Overall, the proposed algorithms provide a practical and robust tool for quasi-Bayesian analysis in statistical applications.

Suggested Citation

  • Masahiro Tanaka, 2025. "Modified Delayed Acceptance MCMC for Quasi-Bayesian Inference with Linear Moment Conditions," Papers 2511.17117, arXiv.org.
  • Handle: RePEc:arx:papers:2511.17117
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.17117
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.17117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.