IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.15427.html

Tractable Estimation of Nonlinear Panels with Interactive Fixed Effects

Author

Listed:
  • Andrei Zeleneev
  • Weisheng Zhang

Abstract

Interactive fixed effects are routinely controlled for in linear panel models. While an analogous fixed effects (FE) estimator for nonlinear models has been available in the literature (Chen, Fernandez-Val and Weidner, 2021), it sees much more limited use in applied research because its implementation involves solving a high-dimensional non-convex problem. In this paper, we complement the theoretical analysis of Chen, Fernandez-Val and Weidner (2021) by providing a new computationally efficient estimator that is asymptotically equivalent to their estimator. Unlike the previously proposed FE estimator, our estimator avoids solving a high-dimensional optimization problem and can be feasibly computed in large nonlinear panels. Our proposed method involves two steps. In the first step, we convexify the optimization problem using nuclear norm regularization (NNR) and obtain preliminary NNR estimators of the parameters, including the fixed effects. Then, we find the global solution of the original optimization problem using a standard gradient descent method initialized at these preliminary estimates. Thus, in practice, one can simply combine our computationally efficient estimator with the inferential theory provided in Chen, Fernandez-Val and Weidner (2021) to construct confidence intervals and perform hypothesis testing.

Suggested Citation

  • Andrei Zeleneev & Weisheng Zhang, 2025. "Tractable Estimation of Nonlinear Panels with Interactive Fixed Effects," Papers 2511.15427, arXiv.org.
  • Handle: RePEc:arx:papers:2511.15427
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.15427
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Mugnier, 2022. "A Simple and Computationally Trivial Estimator for Grouped Fixed Effects Models," Papers 2203.08879, arXiv.org, revised Apr 2025.
    2. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    3. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    4. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    5. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
    6. Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 40-77.
    7. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    8. Martin Mugnier, 2025. "A simple and computationally trivial estimator for grouped fixed effects models," Post-Print halshs-05163274, HAL.
    9. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    10. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    11. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    12. Miao, Ke & Li, Kunpeng & Su, Liangjun, 2020. "Panel threshold models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 219(1), pages 137-170.
    13. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    14. Beyhum, Jad & Gautier, Eric, 2019. "Square-root nuclear norm penalized estimator for panel data models with approximately low-rank unobserved Heterogeneity," TSE Working Papers 19-1008, Toulouse School of Economics (TSE).
    15. Mugnier, Martin, 2025. "A simple and computationally trivial estimator for grouped fixed effects models," Journal of Econometrics, Elsevier, vol. 250(C).
    16. Iv'an Fern'andez-Val & Hugo Freeman & Martin Weidner, 2020. "Low-Rank Approximations of Nonseparable Panel Models," Papers 2010.12439, arXiv.org, revised Mar 2021.
    17. Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023. "High-dimensional VARs with common factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
    18. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
    19. Hossein Alidaee & Eric Auerbach & Michael P. Leung, 2020. "Recovering Network Structure from Aggregated Relational Data using Penalized Regression," Papers 2001.06052, arXiv.org.
    20. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy B. Armstrong & Martin Weidner & Andrei Zeleneev, 2024. "Robust estimation and inference in panels with interactive fixed effects," CeMMAP working papers 28/24, Institute for Fiscal Studies.
    2. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    3. Gobillon, Laurent & Magnac, Thierry & Roux, Sébastien, 2022. "Lifecycle Wages and Human Capital Investments: Selection and Missing Data," TSE Working Papers 22-1299, Toulouse School of Economics (TSE).
    4. Ben Deaner & Chen-Wei Hsiang & Andrei Zeleneev, 2025. "Inferring Treatment Effects in Large Panels by Uncovering Latent Similarities," Papers 2503.20769, arXiv.org, revised Mar 2025.
    5. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    6. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
    8. Liang Chen & Minyuan Zhang, 2023. "Common Correlated Effects Estimation of Nonlinear Panel Data Models," Papers 2304.13199, arXiv.org.
    9. Brown, Nicholas L. & Butts, Kyle, 2025. "Dynamic treatment effect estimation with interactive fixed effects and short panels," Journal of Econometrics, Elsevier, vol. 250(C).
    10. Hugo Freeman, 2022. "Linear Multidimensional Regression with Interactive Fixed-Effects," Papers 2209.11691, arXiv.org, revised Mar 2025.
    11. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    12. Victor Chernozhukov & Christian Hansen & Yuan Liao & Yinchu Zhu, 2019. "Inference for heterogeneous effects using low-rank estimations," CeMMAP working papers CWP31/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, The University of Osaka, revised Mar 2020.
    14. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    15. Mugnier, Martin, 2025. "A simple and computationally trivial estimator for grouped fixed effects models," Journal of Econometrics, Elsevier, vol. 250(C).
    16. Su, Liangjun & Jin, Sainan & Wang, Xia, 2025. "Sieve estimation of state-varying factor models," Journal of Econometrics, Elsevier, vol. 251(C).
    17. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    18. Marc K. Chan & Simon S. Kwok, 2022. "The PCDID Approach: Difference-in-Differences When Trends Are Potentially Unparallel and Stochastic," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1216-1233, June.
    19. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    20. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.15427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.