IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.13934.html
   My bibliography  Save this paper

Empirical Likelihood for Random Forests and Ensembles

Author

Listed:
  • Harold D. Chiang
  • Yukitoshi Matsushita
  • Taisuke Otsu

Abstract

We develop an empirical likelihood (EL) framework for random forests and related ensemble methods, providing a likelihood-based approach to quantify their statistical uncertainty. Exploiting the incomplete $U$-statistic structure inherent in ensemble predictions, we construct an EL statistic that is asymptotically chi-squared when subsampling induced by incompleteness is not overly sparse. Under sparser subsampling regimes, the EL statistic tends to over-cover due to loss of pivotality; we therefore propose a modified EL that restores pivotality through a simple adjustment. Our method retains key properties of EL while remaining computationally efficient. Theory for honest random forests and simulations demonstrate that modified EL achieves accurate coverage and practical reliability relative to existing inference methods.

Suggested Citation

  • Harold D. Chiang & Yukitoshi Matsushita & Taisuke Otsu, 2025. "Empirical Likelihood for Random Forests and Ensembles," Papers 2511.13934, arXiv.org.
  • Handle: RePEc:arx:papers:2511.13934
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.13934
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.13934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.