IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.08202.html

How Fixed-Amount Transactions and Liquidity Constraints Amplify Wealth Inequality: A Kinetic Model Deviating from the Maximum Entropy Benchmark

Author

Listed:
  • Jihyuan Liuh

Abstract

This paper investigates the emergence of wealth inequality through a minimalist kinetic exchange model that incorporates two fundamental economic features: fixed-amount transactions and hard budget constraints. In contrast to the maximum entropy principle, which predicts an exponential Boltzmann-Gibbs distribution with moderate inequality for unconstrained wealth exchange, we demonstrate that these realistic trading rules drive the system toward a highly unequal steady state. We develop a self-consistent mean-field theory, deriving a master equation where agent income follows a Poisson process coupled to the poverty rate. Numerical solution reveals a stationary distribution characterized by a substantial pauper class, high Gini coefficient, and exponential tail--significantly deviating from the maximum entropy benchmark. Agent-based simulations confirm these findings. We identify the poverty trap as the key mechanism: the liquidity constraint creates asymmetric economic agency, where zero-wealth agents become passive recipients, unable to participate in wealth circulation. This work establishes that substantial inequality can emerge spontaneously from equal-opportunity exchanges under basic economic constraints, without requiring agent heterogeneity or multiplicative advantage, providing a mechanistic foundation for understanding poverty as an emergent property of exchange rules.

Suggested Citation

  • Jihyuan Liuh, 2025. "How Fixed-Amount Transactions and Liquidity Constraints Amplify Wealth Inequality: A Kinetic Model Deviating from the Maximum Entropy Benchmark," Papers 2511.08202, arXiv.org.
  • Handle: RePEc:arx:papers:2511.08202
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.08202
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    2. Thomas Piketty, 2014. "Capital in the Twenty-First Century: a multidimensional approach to the history of capital and social classes," PSE-Ecole d'économie de Paris (Postprint) halshs-01157491, HAL.
    3. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    4. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    5. Marco Patriarca & Anirban Chakraborti & Kimmo Kaski & Guido Germano, 2005. "Kinetic theory models for the distribution of wealth: power law from overlap of exponentials," Papers physics/0504153, arXiv.org, revised May 2005.
    6. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    7. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
    2. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    3. Vallejos, Adams & Ormazábal, Ignacio & Borotto, Félix A. & Astudillo, Hernán F., 2019. "A new κ-deformed parametric model for the size distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 819-829.
    4. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    5. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    6. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    7. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    8. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    9. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    10. Shu-Heng Chen & Sai-Ping Li, 2011. "Econophysics: Bridges over a Turbulent Current," Papers 1107.5373, arXiv.org.
    11. Borba, Jhordan Silveira & Gonçalves, Sebastian & Anteneodo, Celia, 2025. "Inequality in a model of capitalist economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
    12. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    13. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    14. Luquini, Evandro & Montagna, Guido & Omar, Nizam, 2020. "Fusing non-conservative kinetic market models and evolutionary computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Lima, Hugo & Vieira, Allan R. & Anteneodo, Celia, 2022. "Nonlinear redistribution of wealth from a stochastic approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    16. Huang, Jing & Wang, Yougui, 2014. "The time-dependent characteristics of relative mobility," Economic Modelling, Elsevier, vol. 37(C), pages 291-295.
    17. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    18. Angle, John, 2011. "The particle system model of income and wealth more likely to imply an analogue of thermodynamics in social science," MPRA Paper 28864, University Library of Munich, Germany.
    19. Jayadev, Arjun, 2008. "A power law tail in India's wealth distribution: Evidence from survey data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 270-276.
    20. N. Bagatella-Flores & M. Rodriguez-Achach & H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2014. "Wealth distribution of simple exchange models coupled with extremal dynamics," Papers 1407.7153, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.08202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.