IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp465-474.html
   My bibliography  Save this article

Inequality measures in kinetic exchange models of wealth distributions

Author

Listed:
  • Ghosh, Asim
  • Chatterjee, Arnab
  • Inoue, Jun-ichi
  • Chakrabarti, Bikas K.

Abstract

In this paper, we study the inequality indices for some models of wealth exchange. We calculated Gini index and newly introduced k-index and compare the results with reported empirical data available for different countries. We have found lower and upper bounds for the indices and discuss the efficiencies of the models. Some exact analytical calculations are given for a few cases. We also exactly compute the quantities for Gamma and double Gamma distributions.

Suggested Citation

  • Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:465-474
    DOI: 10.1016/j.physa.2016.01.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711600145X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aoyama,Hideaki & Fujiwara,Yoshi & Ikeda,Yuichi & Iyetomi,Hiroshi & Souma,Wataru Preface by-Name:Yoshikawa,Hiroshi, 2010. "Econophysics and Companies," Cambridge Books, Cambridge University Press, number 9780521191494, October.
    2. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    3. Anindya S. Chakrabarti & Bikas K. Chakrabarti, 2010. "Inequality reversal: effects of the savings propensity and correlated returns," Papers 1005.3518, arXiv.org.
    4. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    5. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    6. Anindya S. Chakrabarti, 2013. "Bimodality in the firm size distributions: a kinetic exchange model approach," Papers 1302.3818, arXiv.org, revised May 2013.
    7. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    8. Eliazar, Iddo I. & Sokolov, Igor M., 2010. "Measuring statistical heterogeneity: The Pietra index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 117-125.
    9. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    10. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    11. Inoue, Jun-ichi & Ghosh, Asim & Chatterjee, Arnab & Chakrabarti, Bikas K., 2015. "Measuring social inequality with quantitative methodology: Analytical estimates and empirical data analysis by Gini and k indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 184-204.
    12. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    13. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    14. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Inequality reversal: Effects of the savings propensity and correlated returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3572-3579.
    15. Asim Ghosh & Arnab Chatterjee & Anindya S. Chakrabarti & Bikas K Chakrabarti, 2014. "Zipf's law in city size from a resource utilization model," Papers 1403.1822, arXiv.org, revised Oct 2014.
    16. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    17. repec:cup:cbooks:9781107013445 is not listed on IDEAS
    18. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    2. Wang, Lingling & Lai, Shaoyong & Sun, Rongmei, 2022. "Optimal control about multi-agent wealth exchange and decision-making competence," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    3. G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
    4. Chatterjee, Arnab & Ghosh, Asim & Chakrabarti, Bikas K., 2017. "Socio-economic inequality: Relationship between Gini and Kolkata indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 583-595.
    5. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    6. Hunter A. Vallejos & James J. Nutaro & Kalyan S. Perumalla, 2018. "An agent-based model of the observed distribution of wealth in the United States," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 641-656, October.
    7. Ghosh, Asim & Chakrabarti, Bikas K., 2021. "Limiting value of the Kolkata index for social inequality and a possible social constant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterjee, Arnab & Ghosh, Asim & Chakrabarti, Bikas K., 2017. "Socio-economic inequality: Relationship between Gini and Kolkata indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 583-595.
    2. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    3. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    4. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    5. Anindya S. Chakrabarti, 2011. "An almost linear stochastic map related to the particle system models of social sciences," Papers 1101.3617, arXiv.org, revised Mar 2011.
    6. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    7. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    8. Shu-Heng Chen & Sai-Ping Li, 2011. "Econophysics: Bridges over a Turbulent Current," Papers 1107.5373, arXiv.org.
    9. Chatterjee, Arnab & Chakrabarti, Anindya S. & Ghosh, Asim & Chakraborti, Anirban & Nandi, Tushar K., 2016. "Invariant features of spatial inequality in consumption: The case of India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 169-181.
    10. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    11. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    12. Anindya S. Chakrabarti, 2013. "Bimodality in the firm size distributions: a kinetic exchange model approach," Papers 1302.3818, arXiv.org, revised May 2013.
    13. Cui, Jian & Pan, Qiuhui & Qian, Qian & He, Mingfeng & Sun, Qilin, 2013. "A multi-agent dynamic model based on different kinds of bequests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1393-1397.
    14. Jan Lorenz & Fabian Paetzel & Frank Schweitzer, 2013. "Redistribution Spurs Growth by Using a Portfolio Effect on Risky Human Capital," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-13, February.
    15. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    16. Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
    17. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    18. Chakrabarti, Anindya S., 2012. "Effects of the turnover rate on the size distribution of firms: An application of the kinetic exchange models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6039-6050.
    19. Anindya S. Chakrabarti, 2011. "Firm dynamics in a closed, conserved economy: A model of size distribution of employment and related statistics," Papers 1112.2168, arXiv.org.
    20. Jayadev, Arjun, 2008. "A power law tail in India's wealth distribution: Evidence from survey data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 270-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:465-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.