IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0004256.html
   My bibliography  Save this paper

Statistical mechanics of money: How saving propensity affects its distribution

Author

Listed:
  • Anirban Chakraborti
  • Bikas K. Chakrabarti

Abstract

We consider a simple model of a closed economic system where the total money is conserved and the number of economic agents is fixed. In analogy to statistical systems in equilibrium, money and the average money per economic agent are equivalent to energy and temperature, respectively. We investigate the effect of the saving propensity of the agents on the stationary or equilibrium money distribution.The equilibrium probablity distribution of money becomes the usual Gibb's distribution, characteristic of non-interacting agents, when the agents do not save. However with saving, even for local or individual self-interest, the dynamics become cooperative and the resulting asymmetric Gaussian-like stationary distribution acquires global ordering properties. Intriguing singularities are observed in the stationary money distribution in the market, as function of the ``marginal saving propensity'' of the agents.

Suggested Citation

  • Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
  • Handle: RePEc:arx:papers:cond-mat/0004256
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0004256
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sornette, Didier, 1998. "Linear stochastic dynamics with nonlinear fractal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 250(1), pages 295-314.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0004256. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.