IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v664y2025ics0378437125001098.html
   My bibliography  Save this article

Inequality in a model of capitalist economy

Author

Listed:
  • Borba, Jhordan Silveira
  • Gonçalves, Sebastian
  • Anteneodo, Celia

Abstract

We analyze inequality aspects of the agent-based model of capitalist economy named Social Architecture of Capitalism that has been introduced by Ian Wright. The model contemplates two main types of agents, workers and capitalists, which can also be unemployed. Starting from a state where all agents are unemployed and possess the same initial wealth, the system, governed by a few simple rules, quickly self-organizes into two classes. After a transient, the model reproduces the statistics of many relevant macroeconomic quantities of real economies worldwide, notably the two regimes of the distributions of wealth and income. We perform extensive simulations testing the role of the model parameters (number of agents, total wealth, and salary range) on the resulting distribution of wealth and income, the social distribution of agents, and other stylized facts of the dynamics. Our main finding is that, according to the model, in an economy where total wealth is conserved and with a fixed average wage, the increase in wealth per capita comes with more inequality.

Suggested Citation

  • Borba, Jhordan Silveira & Gonçalves, Sebastian & Anteneodo, Celia, 2025. "Inequality in a model of capitalist economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
  • Handle: RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125001098
    DOI: 10.1016/j.physa.2025.130457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001098
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohlrausch, Gustavo L. & Gonçalves, Sebastian, 2024. "Wealth distribution on a dynamic complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    2. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    3. Wright, Ian, 2009. "Implicit Microfoundations for Macroeconomics," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-27.
    4. Hunter A. Vallejos & James J. Nutaro & Kalyan S. Perumalla, 2018. "An agent-based model of the observed distribution of wealth in the United States," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 641-656, October.
    5. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    6. Alan G. Isaac, 2019. "Exploring the Social-Architecture Model," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(4), pages 565-589, October.
    7. Bruce Boghosian, 2014. "Fokker–Planck description of wealth dynamics and the origin of Pareto's law," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(12), pages 1-8.
    8. Cardoso, Ben-Hur Francisco & Gonçalves, Sebastián & Iglesias, José Roberto, 2020. "Wealth distribution models with regulations: Dynamics and equilibria," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    9. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    10. Thomas Piketty, 2013. "Le capital au XXIe siècle," PSE-Ecole d'économie de Paris (Postprint) halshs-00979232, HAL.
    11. Wright, Ian, 2005. "The social architecture of capitalism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 589-620.
    12. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    13. Lavička, H. & Lin, L. & Novotný, J., 2010. "Employment, Production and Consumption model: Patterns of phase transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1708-1720.
    14. Dias, Thiago & Gonçalves, Sebastián, 2024. "Effectiveness of wealth-based vs exchange-based tax systems in reducing inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    16. Banerjee, Suchismita & Chakrabarti, Bikas K. & Mitra, Manipushpak & Mutuswami, Suresh, 2020. "On the Kolkata index as a measure of income inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Ekrem Aydiner & Andrey G. Cherstvy & Ralf Metzler, 2019. "Money distribution in agent-based models with position-exchange dynamics: the Pareto paradigm revisited," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(5), pages 1-4, May.
    18. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    19. Bruce M. Boghosian, 2014. "Fokker-Planck Description of Wealth Dynamics and the Origin of Pareto's Law," Papers 1407.6851, arXiv.org.
    20. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    21. Chakrabarti,Bikas K. & Chakraborti,Anirban & Chakravarty,Satya R. & Chatterjee,Arnab, 2013. "Econophysics of Income and Wealth Distributions," Cambridge Books, Cambridge University Press, number 9781107013445, Enero-Abr.
    22. Ekrem Aydiner & Andrey G. Cherstvy & Ralf Metzler & Igor M. Sokolov, 2023. "Universal Pareto laws in agent-based exchange models: debt and varying initial-money distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-9, September.
    23. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    24. Lima, Hugo & Vieira, Allan R. & Anteneodo, Celia, 2022. "Nonlinear redistribution of wealth from a stochastic approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    25. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    26. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    27. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    28. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    29. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    30. Francisco Cardoso, Ben-Hur & Gonçalves, Sebastián & Iglesias, José Roberto, 2023. "Why equal opportunities lead to maximum inequality? The wealth condensation paradox generally solved," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    31. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    2. N. Bagatella-Flores & M. Rodriguez-Achach & H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2014. "Wealth distribution of simple exchange models coupled with extremal dynamics," Papers 1407.7153, arXiv.org.
    3. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    4. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    5. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    6. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    7. Lima, Hugo & Vieira, Allan R. & Anteneodo, Celia, 2022. "Nonlinear redistribution of wealth from a stochastic approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    9. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    10. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    11. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    12. Monaco, Andrea & Ghio, Matteo & Perrotta, Adamaria, 2024. "Wealth dynamics in a multi-aggregate closed monetary system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    13. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    14. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    15. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    16. Néda, Zoltán & Gere, István & Biró, Tamás S. & Tóth, Géza & Derzsy, Noemi, 2020. "Scaling in income inequalities and its dynamical origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. J. R. Iglesias & R. M. C. de Almeida, 2011. "Entropy and equilibrium state of free market models," Papers 1108.5725, arXiv.org.
    18. AlShelahi, Abdullah & Saigal, Romesh, 2018. "Insights into the macroscopic behavior of equity markets: Theory and application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 778-793.
    19. Li, Jie & Boghosian, Bruce M. & Li, Chengli, 2019. "The Affine Wealth Model: An agent-based model of asset exchange that allows for negative-wealth agents and its empirical validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 423-442.
    20. Zoltan Neda & Istvan Gere & Tamas S. Biro & Geza Toth & Noemi Derzsy, 2019. "Scaling in Income Inequalities and its Dynamical Origin," Papers 1911.02449, arXiv.org, revised Mar 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125001098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.