A sensitivity analysis for the average derivative effect
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jesse Y. Hsu & Dylan S. Small, 2013. "Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 803-811, December.
- Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
- Tan, Zhiqiang, 2006. "A Distributional Approach for Causal Inference Using Propensity Scores," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1619-1637, December.
- Jacob Dorn & Kevin Guo, 2021. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Papers 2102.04543, arXiv.org, revised Aug 2023.
- Jeffrey Zhang & Dylan S Small & Siyu Heng, 2024. "Sensitivity analysis for matched observational studies with continuous exposures and binary outcomes," Biometrika, Biometrika Trust, vol. 111(4), pages 1349-1368.
- Jacob Dorn & Kevin Guo, 2023. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2645-2657, October.
- Matteo Bonvini & Edward H. Kennedy, 2022. "Sensitivity Analysis via the Proportion of Unmeasured Confounding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1540-1550, September.
- Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Abhinandan Dalal & Eric J. Tchetgen Tchetgen, 2025. "Partial Identification of Causal Effects for Endogenous Continuous Treatments," Papers 2508.13946, arXiv.org.
- Zhiqiang Tan, 2025. "Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies," Biometrika, Biometrika Trust, vol. 112(1), pages 2645-2657.
- Melody Huang & Samuel D Pimentel, 2025. "Variance-based sensitivity analysis for weighting estimators results in more informative bounds," Biometrika, Biometrika Trust, vol. 112(1), pages 235-240.
- Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
- Emily Oster, 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 187-204, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abhinandan Dalal & Eric J. Tchetgen Tchetgen, 2025. "Partial Identification of Causal Effects for Endogenous Continuous Treatments," Papers 2508.13946, arXiv.org.
- Aditya Ghosh & Dominik Rothenhausler, 2025. "Assumption-robust Causal Inference," Papers 2505.08729, arXiv.org, revised Jun 2025.
- Melody Huang & Cory McCartan, 2025. "Relative Bias Under Imperfect Identification in Observational Causal Inference," Papers 2507.23743, arXiv.org.
- Zequn Jin & Gaoqian Xu & Xi Zheng & Yahong Zhou, 2025. "Policy Learning under Unobserved Confounding: A Robust and Efficient Approach," Papers 2507.20550, arXiv.org.
- Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
- Matthew A. Masten & Alexandre Poirier & Muyang Ren, 2025. "A General Approach to Relaxing Unconfoundedness," Papers 2501.15400, arXiv.org.
- Kaido, Hiroaki, 2017.
"Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable,"
Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
- Hiroaki Kaido, 2013. "Asymptotically Efficient Estimation of Weighted Average Derivatives with an Inverval Censored Variable," Boston University - Department of Economics - Working Papers Series 2013-022, Boston University - Department of Economics.
- Hiroaki Kaido, 2014. "Asymptotically efficient estimation of weighted average derivatives with an interval censored variable," CeMMAP working papers 03/14, Institute for Fiscal Studies.
- Hiroaki Kaido, 2014. "Asymptotically efficient estimation of weighted average derivatives with an interval censored variable," CeMMAP working papers CWP03/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024.
"Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists,"
IFRO Working Paper
2024/03, University of Copenhagen, Department of Food and Resource Economics.
- Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2025. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," Papers 2508.02310, arXiv.org.
- Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
- Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yukitoshi Matsushita & Taisuke Otsu, 2017.
"Likelihood inference on semiparametric models: Average derivative and treatment effect,"
STICERD - Econometrics Paper Series
592, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Matsushita, Yukitoshi & Otsu, Taisuke, 2018. "Likelihood inference on semiparametric models: average derivative and treatment effect," LSE Research Online Documents on Economics 85870, London School of Economics and Political Science, LSE Library.
- Julius Schaper, 2025. "Residualised Treatment Intensity and the Estimation of Average Partial Effects," Papers 2502.10301, arXiv.org.
- Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
- Arbour, William & Lacroix, Guy & Marchand, Steeve, 2021.
"Prison Rehabilitation Programs: Efficiency and Targeting,"
IZA Discussion Papers
14022, Institute of Labor Economics (IZA).
- Guy Lacroix, 2021. "Prison Rehabilitation Programs: Efficiency and Targeting," CIRANO Working Papers 2021s-01, CIRANO.
- William Arbour & Guy Lacroix & Steeve Marchand, 2021. "Prison Rehabilitation Programs: Efficiency and Targeting," Working Papers tecipa-684, University of Toronto, Department of Economics.
- Yu, Ping & Phillips, Peter C.B., 2018.
"Threshold regression with endogeneity,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
- Ping Yu & Peter C.B. Phillips, 2014. "Threshold Regression with Endogeneity," Cowles Foundation Discussion Papers 1966, Cowles Foundation for Research in Economics, Yale University.
- Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
- Deepankar Basu, 2023. "Formal Covariate Benchmarking to Bound Omitted Variable Bias," Papers 2306.10562, arXiv.org.
- Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-11-17 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.06243. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2511.06243.html