IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.04515.html
   My bibliography  Save this paper

Robust mean-field control under common noise uncertainty

Author

Listed:
  • Mathieu Lauri`ere
  • Ariel Neufeld
  • Kyunghyun Park

Abstract

We propose and analyze a framework for discrete-time robust mean-field control problems under common noise uncertainty. In this framework, the mean-field interaction describes the collective behavior of infinitely many cooperative agents' state and action, while the common noise -- a random disturbance affecting all agents' state dynamics -- is uncertain. A social planner optimizes over open-loop controls on an infinite horizon to maximize the representative agent's worst-case expected reward, where worst-case corresponds to the most adverse probability measure among all candidates inducing the unknown true law of the common noise process. We refer to this optimization as a robust mean-field control problem under common noise uncertainty. We first show that this problem arises as the asymptotic limit of a cooperative $N$-agent robust optimization problem, commonly known as propagation of chaos. We then prove the existence of an optimal open-loop control by linking the robust mean field control problem to a lifted robust Markov decision problem on the space of probability measures and by establishing the dynamic programming principle and Bellman--Isaac fixed point theorem for the lifted robust Markov decision problem. Finally, we complement our theoretical results with numerical experiments motivated by distribution planning and systemic risk in finance, highlighting the advantages of accounting for common noise uncertainty.

Suggested Citation

  • Mathieu Lauri`ere & Ariel Neufeld & Kyunghyun Park, 2025. "Robust mean-field control under common noise uncertainty," Papers 2511.04515, arXiv.org.
  • Handle: RePEc:arx:papers:2511.04515
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.04515
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.04515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.