IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.03306.html

Using spatial modeling to address covariate measurement error

Author

Listed:
  • Susanne M. Schennach
  • Vincent Starck

Abstract

We propose a new estimation methodology to address the presence of covariate measurement error by exploiting the availability of spatial data. The approach uses neighboring observations as repeated measurements, after suitably controlling for the random distance between the observations in a way that allows the use of operator diagonalization methods to establish identification. The method is applicable to general nonlinear models with potentially nonclassical errors and does not rely on a priori distributional assumptions regarding any of the variables. The method's implementation combines a sieve semiparametric maximum likelihood with a first-step kernel estimator and simulation methods. The method's effectiveness is illustrated through both controlled simulations and an application to the assessment of the effect of pre-colonial political structure on current economic development in Africa.

Suggested Citation

  • Susanne M. Schennach & Vincent Starck, 2025. "Using spatial modeling to address covariate measurement error," Papers 2511.03306, arXiv.org.
  • Handle: RePEc:arx:papers:2511.03306
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.03306
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Laan Mark J. & Dudoit Sandrine & Keles Sunduz, 2004. "Asymptotic Optimality of Likelihood-Based Cross-Validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-25, March.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Sun, Yiguo, 2016. "Functional-coefficient spatial autoregressive models with nonparametric spatial weights," Journal of Econometrics, Elsevier, vol. 195(1), pages 134-153.
    4. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Demidova, 2021. "Methods of spatial econometrics and evaluation of government programs effectiveness," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 107-134.
    2. Luo, Guowang & Wu, Mixia & Pang, Zhen, 2022. "Estimation of spatial autoregressive models with covariate measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    3. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    4. Sanying Feng & Tiejun Tong & Sung Nok Chiu, 2023. "Statistical Inference for Partially Linear Varying Coefficient Spatial Autoregressive Panel Data Model," Mathematics, MDPI, vol. 11(22), pages 1-19, November.
    5. Xuan Liang & Jiti Gao & Xiaodong Gong, 2019. "Time-Varying Coefficient Spatial Autoregressive Panel Data Model with Fixed Effects," Monash Econometrics and Business Statistics Working Papers 26/19, Monash University, Department of Econometrics and Business Statistics.
    6. Arthur Lewbel & Xi Qu & Xun Tang, 2024. "Estimating Social Network Models with Link Misclassification," Boston College Working Papers in Economics 1079, Boston College Department of Economics.
    7. Kun Duan & Tapas Mishra & Mamata Parhi & Simon Wolfe, 2019. "How Effective are Policy Interventions in a Spatially-Embedded International Real Estate Market?," The Journal of Real Estate Finance and Economics, Springer, vol. 58(4), pages 596-637, May.
    8. Malikov, Emir & Sun, Yiguo, 2017. "Semiparametric estimation and testing of smooth coefficient spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 199(1), pages 12-34.
    9. Arthur Lewbel & Xi Qu & Xun Tang, 2022. "Estimating Social Network Models with Missing Links," Boston College Working Papers in Economics 1056, Boston College Department of Economics.
    10. Konstantinidi, Antri & Kourtellos, Andros & Sun, Yiguo, 2023. "Social threshold regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 2057-2081.
    11. Corrado Giulietti & Brendon McConnell & Yves Zenou, 2025. "Beyond Hot Spots: Enhancing Police Effectiveness by Incorporating a Spatial Network Approach," RFBerlin Discussion Paper Series 2525, ROCKWOOL Foundation Berlin (RFBerlin).
    12. Abhimanyu Gupta & Xi Qu & Sorawoot Srisuma & Jiajun Zhang, 2025. "Wald inference on varying coefficients," Papers 2502.03084, arXiv.org, revised Sep 2025.
    13. Schennach, Susanne M., 2020. "Mismeasured and unobserved variables," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 487-565, Elsevier.
    14. Yuan Zhang & Yiguo Sun & Thanasis Stengos, 2019. "Spatial Dependence in the Residential Canadian Housing Market," The Journal of Real Estate Finance and Economics, Springer, vol. 58(2), pages 223-263, February.
    15. Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
    16. Yao Luo & Peijun Sang & Ruli Xiao, 2024. "Order Statistics Approaches to Unobserved Heterogeneity in Auctions," Working Papers tecipa-776, University of Toronto, Department of Economics.
    17. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    18. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    19. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    20. Kristien Werck & Bruno Heyndels & Benny Geys, 2008. "The impact of ‘central places’ on spatial spending patterns: evidence from Flemish local government cultural expenditures," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 32(1), pages 35-58, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.03306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.