IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.03306.html
   My bibliography  Save this paper

Using spatial modeling to address covariate measurement error

Author

Listed:
  • Susanne M. Schennach
  • Vincent Starck

Abstract

We propose a new estimation methodology to address the presence of covariate measurement error by exploiting the availability of spatial data. The approach uses neighboring observations as repeated measurements, after suitably controlling for the random distance between the observations in a way that allows the use of operator diagonalization methods to establish identification. The method is applicable to general nonlinear models with potentially nonclassical errors and does not rely on a priori distributional assumptions regarding any of the variables. The method's implementation combines a sieve semiparametric maximum likelihood with a first-step kernel estimator and simulation methods. The method's effectiveness is illustrated through both controlled simulations and an application to the assessment of the effect of pre-colonial political structure on current economic development in Africa.

Suggested Citation

  • Susanne M. Schennach & Vincent Starck, 2025. "Using spatial modeling to address covariate measurement error," Papers 2511.03306, arXiv.org.
  • Handle: RePEc:arx:papers:2511.03306
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.03306
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.03306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.