IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.01923.html
   My bibliography  Save this paper

When Assurance Undermines Intelligence: The Efficiency Costs of Data Governance in AI-Enabled Labor Markets

Author

Listed:
  • Lei Chen
  • Chaoyue Gao
  • Alvin Leung
  • Xiaoning Wang

Abstract

Generative artificial intelligence (GenAI) like Large Language Model (LLM) is increasingly integrated into digital platforms to enhance information access, deliver personalized experiences, and improve matching efficiency. However, these algorithmic advancements rely heavily on large-scale user data, creating a fundamental tension between information assurance-the protection, integrity, and responsible use of privacy data-and artificial intelligence-the learning capacity and predictive accuracy of models. We examine this assurance-intelligence trade-off in the context of LinkedIn, leveraging a regulatory intervention that suspended the use of user data for model training in Hong Kong. Using large-scale employment and job posting data from Revelio Labs and a Difference-in-Differences design, we show that restricting data use significantly reduced GenAI efficiency, leading to lower matching rates, higher employee turnover, and heightened labor market frictions. These effects were especially pronounced for small and fast-growing firms that rely heavily on AI for talent acquisition. Our findings reveal the unintended efficiency costs of well-intentioned data governance and highlight that information assurance, while essential for trust, can undermine intelligence-driven efficiency when misaligned with AI system design. This study contributes to emerging research on AI governance and digital platform by theorizing data assurance as an institutional complement-and potential constraint-to GenAI efficacy in data-intensive environments.

Suggested Citation

  • Lei Chen & Chaoyue Gao & Alvin Leung & Xiaoning Wang, 2025. "When Assurance Undermines Intelligence: The Efficiency Costs of Data Governance in AI-Enabled Labor Markets," Papers 2511.01923, arXiv.org.
  • Handle: RePEc:arx:papers:2511.01923
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.01923
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.01923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.