BondBERT: What we learn when assigning sentiment in the bond market
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Juan Piñeiro-Chousa & M.Ángeles López-Cabarcos & Jérôme Caby & Aleksandar Šević, 2021. "The influence of investor sentiment on the green bond market," Post-Print hal-02960892, HAL.
- Eli Bartov & Lucile Faurel & Partha Mohanram, 2023. "The Role of Social Media in the Corporate Bond Market: Evidence from Twitter," Management Science, INFORMS, vol. 69(9), pages 5638-5667, September.
- Boyu Zhang & Hongyang Yang & Xiao-Yang Liu, 2023. "Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of General-Purpose Large Language Models," Papers 2306.12659, arXiv.org.
- Peng, Yueqian & Shi, Li & Shi, Xiaojun & Tan, Songtao, 2024. "Tone or term: Machine-learning text analysis, featured vocabulary extraction, and evidence from bond pricing in China," Journal of Empirical Finance, Elsevier, vol. 78(C).
- Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Caby, Jérôme & Šević, Aleksandar, 2021. "The influence of investor sentiment on the green bond market," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014.
"Good debt or bad debt: Detecting semantic orientations in economic texts,"
Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
- Pekka Malo & Ankur Sinha & Pyry Takala & Pekka Korhonen & Jyrki Wallenius, 2013. "Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts," Papers 1307.5336, arXiv.org, revised Jul 2013.
- Neng Wang & Hongyang Yang & Christina Dan Wang, 2023. "FinGPT: Instruction Tuning Benchmark for Open-Source Large Language Models in Financial Datasets," Papers 2310.04793, arXiv.org, revised Nov 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khalfaoui, Rabeh & Mefteh-Wali, Salma & Dogan, Buhari & Ghosh, Sudeshna, 2023.
"Extreme spillover effect of COVID-19 pandemic-related news and cryptocurrencies on green bond markets: A quantile connectedness analysis,"
International Review of Financial Analysis, Elsevier, vol. 86(C).
- Rabeh Khalfaoui & Salma Mefteh-Wali & Buhari Dogan & Sudeshna Ghosh, 2023. "Extreme spillover effect of COVID-19 pandemic-related news and cryptocurrencies on green bond markets: A quantile connectedness analysis," Post-Print hal-03998228, HAL.
- Wang, Gaoshan & Yu, Guangjin & Shen, Xiaohong, 2021. "The effect of online environmental news on green industry stocks: The mediating role of investor sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
- Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Kirtac, Kemal & Germano, Guido, 2024.
"Sentiment trading with large language models,"
Finance Research Letters, Elsevier, vol. 62(PB).
- Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," LSE Research Online Documents on Economics 122592, London School of Economics and Political Science, LSE Library.
- Kemal Kirtac & Guido Germano, 2024. "Sentiment trading with large language models," Papers 2412.19245, arXiv.org.
- Bouteska, Ahmed & Ha, Le Thanh & Bhuiyan, Faruk & Sharif, Taimur & Abedin, Mohammad Zoynul, 2024. "Contagion between investor sentiment and green bonds in China during the global uncertainties," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 469-484.
- Wang, Kai-Hua & Zhao, Yan-Xin & Jiang, Cui-Feng & Li, Zheng-Zheng, 2022. "Does green finance inspire sustainable development? Evidence from a global perspective," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 412-426.
- Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022.
"Media-expressed tone, option characteristics, and stock return predictability,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2019. "Media-expressed tone, Option Characteristics, and Stock Return Predictability," IRTG 1792 Discussion Papers 2019-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Hu, Lei & Song, Min & Wen, Fenghua & Zhang, Yun & Zhao, Yunning, 2025. "The impact of climate attention on risk spillover effect in energy futures markets," Energy Economics, Elsevier, vol. 141(C).
- Fredström, Ashkan & Parida, Vinit & Wincent, Joakim & Sjödin, David & Oghazi, Pejvak, 2022. "What is the Market Value of Artificial Intelligence and Machine Learning? The Role of Innovativeness and Collaboration for Performance," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
- Dai, Xiajing & Zhang, Junjie, 2024. "China's green development journey through resource rent optimization and green finance policies," Resources Policy, Elsevier, vol. 90(C).
- Zhong, Xingxing & Zhao, Lei, 2024. "Alternative economic strategies for an ecological resurrection: The case of natural resource markets," Resources Policy, Elsevier, vol. 90(C).
- Travis Adams & Andrea Ajello & Diego Silva & Francisco Vazquez-Grande, 2023. "More than Words: Twitter Chatter and Financial Market Sentiment," Papers 2305.16164, arXiv.org.
- Ren, Xiaohang & Li, Yiying & yan, Cheng & Wen, Fenghua & Lu, Zudi, 2022. "The interrelationship between the carbon market and the green bonds market: Evidence from wavelet quantile-on-quantile method," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
- Abakah, Emmanuel Joel Aikins & Tiwari, Aviral Kumar & Adekoya, Oluwasegun B. & Oteng-Abayie, Eric Fosu, 2023. "An analysis of the time-varying causality and dynamic correlation between green bonds and US gas prices," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
- Xiao-Yang Liu & Guoxuan Wang & Hongyang Yang & Daochen Zha, 2023. "FinGPT: Democratizing Internet-scale Data for Financial Large Language Models," Papers 2307.10485, arXiv.org, revised Nov 2023.
- Martina Halouskov'a & v{S}tefan Ly'ocsa, 2025. "Forecasting U.S. equity market volatility with attention and sentiment to the economy," Papers 2503.19767, arXiv.org.
- Wei Su, Chi & Yue Song, Xin & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2024. "Optimistic or pessimistic: How do investors impact the green bond market?," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
- Ha, Le Thanh & Nham, Nguyen Thi Hong, 2022. "An application of a TVP-VAR extended joint connected approach to explore connectedness between WTI crude oil, gold, stock and cryptocurrencies during the COVID-19 health crisis," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- David M. Goldberg & Nohel Zaman & Arin Brahma & Mariano Aloiso, 2022. "Are mortgage loan closing delay risks predictable? A predictive analysis using text mining on discussion threads," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(3), pages 419-437, March.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-11-17 (Big Data)
- NEP-FMK-2025-11-17 (Financial Markets)
- NEP-FOR-2025-11-17 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.01869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2511.01869.html