Inference on Welfare and Value Functionals under Optimal Treatment Assignment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xiaohong Chen & Demian Pouzo, 2015.
"Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models,"
Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
- Xiaohong Chen & Demian Pouzo, 2013. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," Cowles Foundation Discussion Papers 1897RR, Cowles Foundation for Research in Economics, Yale University, revised Nov 2014.
- Xiaohong Chen & Demian Pouzo, 2013. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," Cowles Foundation Discussion Papers 1897R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2014.
- Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," Papers 1411.1144, arXiv.org, revised Mar 2015.
- Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," CeMMAP working papers CWP38/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Xiaohong Chen & Timothy M. Christensen, 2018.
"Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression,"
Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
- Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-Norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression," Cowles Foundation Discussion Papers 1923R2, Cowles Foundation for Research in Economics, Yale University, revised Jan 2017.
- Xiaohong Chen & Timothy M. Christensen, 2017. "Optimal sup-norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," CeMMAP working papers CWP09/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal Sup-norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression," Papers 1508.03365, arXiv.org, revised Apr 2017.
- Xiaohong Chen & Wayne Yuan Gao, 2025. "Semiparametric Learning of Integral Functionals on Submanifolds," Cowles Foundation Discussion Papers 2450, Cowles Foundation for Research in Economics, Yale University.
- Bhattacharya, Debopam & Dupas, Pascaline, 2012.
"Inferring welfare maximizing treatment assignment under budget constraints,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
- Debopam Bhattacharya & Pascaline Dupas, 2008. "Inferring Welfare Maximizing Treatment Assignment under Budget Constraints," NBER Working Papers 14447, National Bureau of Economic Research, Inc.
- Gyungbae Park, 2024. "Debiased Machine Learning when Nuisance Parameters Appear in Indicator Functions," Papers 2403.15934, arXiv.org, revised Mar 2025.
- Howard S. Bloom & Larry L. Orr & Stephen H. Bell & George Cave & Fred Doolittle & Winston Lin & Johannes M. Bos, 1997. "The Benefits and Costs of JTPA Title II-A Programs: Key Findings from the National Job Training Partnership Act Study," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 549-576.
- Xiaohong Chen & Wayne Yuan Gao, 2025. "Semiparametric Learning of Integral Functionals on Submanifolds," Papers 2507.12673, arXiv.org, revised Oct 2025.
- Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
- Kai Feng & Han Hong & Denis Nekipelov, 2024. "Statistical Inference of Optimal Allocations I: Regularities and their Implications," Papers 2403.18248, arXiv.org, revised Jun 2025.
- Matias D. Cattaneo & Rocio Titiunik & Ruiqi Rae Yu, 2025. "Estimation and Inference in Boundary Discontinuity Designs: Distance-Based Methods," Papers 2510.26051, arXiv.org.
- Xiaohong Chen & Timothy Christensen & Sid Kankanala, 2025. "Adaptive Estimation and Uniform Confidence Bands for Nonparametric Structural Functions and Elasticities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 92(1), pages 162-196.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nan Liu & Yanbo Liu & Yuya Sasaki & Yuanyuan Wan, 2025. "Nonparametric Uniform Inference in Binary Classification and Policy Values," Papers 2511.14700, arXiv.org, revised Dec 2025.
- Xiaohong Chen & Wayne Yuan Gao, 2025. "Semiparametric Learning of Integral Functionals on Submanifolds," Papers 2507.12673, arXiv.org, revised Oct 2025.
- Xiaohong Chen & Wayne Yuan Gao, 2025. "Semiparametric Learning of Integral Functionals on Submanifolds," Cowles Foundation Discussion Papers 2450, Cowles Foundation for Research in Economics, Yale University.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
- Michael Jansson & Demian Pouzo, 2017.
"Towards a General Large Sample Theory for Regularized Estimators,"
Papers
1712.07248, arXiv.org, revised Jul 2020.
- Michael Jansson & Demian Pouzo, 2019. "Towards a general large sample theory for regularized estimators," CeMMAP working papers CWP63/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
- Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
- Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers 10/17, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2021.
"Equality-Minded Treatment Choice,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers CWP10/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2018. "Equality-minded treatment choice," CeMMAP working papers CWP71/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yanqin Fan & Yuan Qi & Gaoqian Xu, 2025. "Policy Learning with $\alpha$-Expected Welfare," Papers 2505.00256, arXiv.org.
- Lu, Zhentong & Shi, Xiaoxia & Tao, Jing, 2023. "Semi-nonparametric estimation of random coefficients logit model for aggregate demand," Journal of Econometrics, Elsevier, vol. 235(2), pages 2245-2265.
- Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Nov 2025.
- Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2025.
"Loss aversion and the welfare ranking of policy interventions,"
Journal of Econometrics, Elsevier, vol. 252(PB).
- Sergio Firpo & Antonio F. Galvao & Martyna Kobus & Thomas Parker & Pedro Rosa-Dias, 2020. "Loss aversion and the welfare ranking of policy interventions," Papers 2004.08468, arXiv.org, revised Sep 2023.
- Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
- Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023.
"Towards data-driven project design: Providing optimal treatment rules for development projects,"
Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2021. "Towards Data-driven Project design: Providing Optimal Treatment Rules for Development Projects," 2021 Annual Meeting, August 1-3, Austin, Texas 314016, Agricultural and Applied Economics Association.
- Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
- Giovanni Cerulli, 2020. "Optimal Policy Learning: From Theory to Practice," Papers 2011.04993, arXiv.org.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024.
"Inference on Winners,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP31/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2020. "Inference on winners," CeMMAP working papers CWP43/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2019. "Inference on Winners," NBER Working Papers 25456, National Bureau of Economic Research, Inc.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP73/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-11-10 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.25607. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2510.25607.html