IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.16972.html
   My bibliography  Save this paper

Preference Measurement Error, Concentration in Recommendation Systems, and Persuasion

Author

Listed:
  • Andreas Haupt

Abstract

Algorithmic recommendation based on noisy preference measurement is prevalent in recommendation systems. This paper discusses the consequences of such recommendation on market concentration and inequality. Binary types denoting a statistical majority and minority are noisily revealed through a statistical experiment. The achievable utilities and recommendation shares for the two groups can be analyzed as a Bayesian Persuasion problem. While under arbitrary noise structures, effects on concentration compared to a full-information market are ambiguous, under symmetric noise, concentration increases and consumer welfare becomes more unequal. We define symmetric statistical experiments and analyze persuasion under a restriction to such experiments, which may be of independent interest.

Suggested Citation

  • Andreas Haupt, 2025. "Preference Measurement Error, Concentration in Recommendation Systems, and Persuasion," Papers 2510.16972, arXiv.org.
  • Handle: RePEc:arx:papers:2510.16972
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.16972
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    2. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.
    3. Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
    4. Weeds, Helen, 2012. "Superstars and the long tail: The impact of technology on market structure in media industries," Information Economics and Policy, Elsevier, vol. 24(1), pages 60-68.
    5. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    6. Umberto Panniello & Michele Gorgoglione & Alexander Tuzhilin, 2016. "Research Note—In CARSs We Trust: How Context-Aware Recommendations Affect Customers’ Trust and Other Business Performance Measures of Recommender Systems," Information Systems Research, INFORMS, vol. 27(1), pages 182-196, March.
    7. Pedro Campos & Eva Pinto & Ana Torres, 2025. "Rating and perceived helpfulness in a bipartite network of online product reviews," Electronic Commerce Research, Springer, vol. 25(3), pages 1607-1639, June.
    8. Tianshu Sun & Sean J. Taylor, 2020. "Displaying things in common to encourage friendship formation: A large randomized field experiment," Quantitative Marketing and Economics (QME), Springer, vol. 18(3), pages 237-271, September.
    9. Xitong Li & Jörn Grahl & Oliver Hinz, 2022. "How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment," Information Systems Research, INFORMS, vol. 33(2), pages 620-637, June.
    10. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2010. "Research Commentary --- Long Tails vs. Superstars: The Effect of Information Technology on Product Variety and Sales Concentration Patterns," Information Systems Research, INFORMS, vol. 21(4), pages 736-747, December.
    11. Anuj Kumar & Kartik Hosanagar, 2019. "Measuring the Value of Recommendation Links on Product Demand," Information Systems Research, INFORMS, vol. 30(3), pages 819-838, September.
    12. Rajiv Banker & Yi Liang & Narayan Ramasubbu, 2021. "Technical Debt and Firm Performance," Management Science, INFORMS, vol. 67(5), pages 3174-3194, May.
    13. Zhiyi Wang & Lusi Yang & Jungpil Hahn, 2023. "Winner Takes All? The Blockbuster Effect on Crowdfunding Platforms," Information Systems Research, INFORMS, vol. 34(3), pages 935-960, September.
    14. Karl Taeuscher, 2019. "Uncertainty kills the long tail: demand concentration in peer-to-peer marketplaces," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 649-660, December.
    15. Jason Greenberg & Daniel B. Sands & Gino Cattani & Joseph Porac, 2024. "Rating systems and increased heterogeneity in firm performance: Evidence from the New York City Restaurant Industry, 1994–2013," Strategic Management Journal, Wiley Blackwell, vol. 45(1), pages 36-65, January.
    16. Joonhyuk Yang & Eric T. Anderson & Brett R. Gordon, 2021. "Digitization and Flexibility: Evidence from the South Korean Movie Market," Marketing Science, INFORMS, vol. 40(5), pages 821-843, September.
    17. Myounggu Lee & Hye-jin Kim, 2024. "Exploring determinants of digital music success in South Korea," Electronic Commerce Research, Springer, vol. 24(3), pages 1659-1680, September.
    18. Peng, Diefeng & Rao, Yulei & Sun, Xianming & Xiao, Erte, 2025. "Optional disclosure and observational learning," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    19. Tom Fangyun Tan & Serguei Netessine & Lorin Hitt, 2017. "Is Tom Cruise Threatened? An Empirical Study of the Impact of Product Variety on Demand Concentration," Information Systems Research, INFORMS, vol. 28(3), pages 643-660, September.
    20. Joan Calzada & Nestor Duch-Brown & Ricard Gil, 2021. "Do search engines increase concentration in media markets?," UB School of Economics Working Papers 2021/415, University of Barcelona School of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.16972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.