IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.15616.html
   My bibliography  Save this paper

Martingale theory for Dynkin games with asymmetric information

Author

Listed:
  • Tiziano De Angelis
  • Jan Palczewski
  • Jacob Smith

Abstract

This paper provides necessary and sufficient conditions for a pair of randomised stopping times to form a saddle point of a zero-sum Dynkin game with partial and/or asymmetric information across players. The framework is non-Markovian and covers essentially any information structure. Our methodology relies on the identification of suitable super and submartingales involving players' equilibrium payoffs. Saddle point strategies are characterised in terms of the dynamics of those equilibrium payoffs and are related to their Doob-Meyer decompositions.

Suggested Citation

  • Tiziano De Angelis & Jan Palczewski & Jacob Smith, 2025. "Martingale theory for Dynkin games with asymmetric information," Papers 2510.15616, arXiv.org.
  • Handle: RePEc:arx:papers:2510.15616
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.15616
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiziano De Angelis & Erik Ekström & Kristoffer Glover, 2022. "Dynkin Games with Incomplete and Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 47(1), pages 560-586, February.
    2. Touzi, N. & Vieille, N., 1999. "Continuous-Time Dynkin Games with Mixed Strategies," Papiers d'Economie Mathématique et Applications 1999.112, Université Panthéon-Sorbonne (Paris 1).
    3. Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 1999. "Stopping Games with Randomized Strategies," Discussion Papers 1258, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Fabien Gensbittel & Christine Grün, 2019. "Zero-Sum Stopping Games with Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 277-302, February.
    5. Erik Ekstrom & Stephane Villeneuve, 2006. "On the value of optimal stopping games," Papers math/0610324, arXiv.org.
    6. Stéphane Villeneuve & Erik Ekstrom, 2006. "On the Value of Optimal Stopping Games," Post-Print hal-00173182, HAL.
    7. repec:dau:papers:123456789/6927 is not listed on IDEAS
    8. Tiziano De Angelis & Fabien Gensbittel & Stephane Villeneuve, 2021. "A Dynkin Game on Assets with Incomplete Information on the Return," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 28-60, February.
    9. Banas, Lubomir & Ferrari, Giorgio & Randrianasolo, Tsiry Avisoa, 2025. "Numerical approximation of Dynkin games with asymmetric information," Center for Mathematical Economics Working Papers 733, Center for Mathematical Economics, Bielefeld University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano De Angelis & Nikita Merkulov & Jan Palczewski, 2020. "On the value of non-Markovian Dynkin games with partial and asymmetric information," Papers 2007.10643, arXiv.org, revised Feb 2021.
    2. Yuri Kifer, 2012. "Dynkin Games and Israeli Options," Papers 1209.1791, arXiv.org.
    3. David Hobson & Gechun Liang & Edward Wang, 2021. "Callable convertible bonds under liquidity constraints and hybrid priorities," Papers 2111.02554, arXiv.org, revised Oct 2024.
    4. Boyarchenko, Svetlana & Levendorskiĭ, Sergei, 2014. "Preemption games under Lévy uncertainty," Games and Economic Behavior, Elsevier, vol. 88(C), pages 354-380.
    5. Sandroni, Alvaro & Urgun, Can, 2017. "Dynamics in Art of War," Mathematical Social Sciences, Elsevier, vol. 86(C), pages 51-58.
    6. Said Hamadene & Jianfeng Zhang, 2008. "The Continuous Time Nonzero-sum Dynkin Game Problem and Application in Game Options," Papers 0810.5698, arXiv.org.
    7. Tiziano De Angelis & Erik Ekstrom, 2019. "Playing with ghosts in a Dynkin game," Papers 1905.06564, arXiv.org.
    8. Jacobovic, Royi & Levy, Yehuda John & Solan, Eilon, 0. "Bayesian games with nested information," Theoretical Economics, Econometric Society.
    9. H. Dharma Kwon & Jan Palczewski, 2022. "Exit game with private information," Papers 2210.01610, arXiv.org, revised Oct 2023.
    10. Yan Dolinsky & Ariel Neufeld, 2015. "Super-replication in Fully Incomplete Markets," Papers 1508.05233, arXiv.org, revised Sep 2016.
    11. Luis H. R. Alvarez E. & Paavo Salminen, 2017. "Timing in the presence of directional predictability: optimal stopping of skew Brownian motion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.
    12. Erhan Bayraktar & Song Yao, 2015. "On the Robust Dynkin Game," Papers 1506.09184, arXiv.org, revised Sep 2016.
    13. Tiziano De Angelis & Erik Ekström & Kristoffer Glover, 2022. "Dynkin Games with Incomplete and Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 47(1), pages 560-586, February.
    14. Rida Laraki & Eilon Solan, 2012. "Equilibrium in Two-Player Nonzero-Sum Dynkin Games in Continuous Time," Working Papers hal-00753508, HAL.
    15. Zhou Zhou, 2015. "Non-zero-sum stopping games in discrete time," Papers 1508.06032, arXiv.org.
    16. Shmaya, Eran & Solan, Eilon, 2004. "Zero-sum dynamic games and a stochastic variation of Ramsey's theorem," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 319-329, August.
    17. De Angelis, Tiziano & Gensbittel, Fabien & Villeneuve, Stéphane, 2017. "A Dynkin game on assets with incomplete information on the return," TSE Working Papers 17-815, Toulouse School of Economics (TSE).
    18. Wong, Tat Wing & Fung, Ka Wai Terence & Leung, Kwai Sun, 2020. "Strategic bank closure and deposit insurance valuation," European Journal of Operational Research, Elsevier, vol. 285(1), pages 96-105.
    19. Aradhye, Aditya & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2023. "Incentive compatibility in sender-receiver stopping games," Games and Economic Behavior, Elsevier, vol. 141(C), pages 303-320.
    20. Gechun Liang & Haodong Sun, 2018. "Dynkin games with Poisson random intervention times," Papers 1803.00329, arXiv.org, revised Jul 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.15616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.