IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.07099.html

Diffusion-Augmented Reinforcement Learning for Robust Portfolio Optimization under Stress Scenarios

Author

Listed:
  • Himanshu Choudhary
  • Arishi Orra
  • Manoj Thakur

Abstract

In the ever-changing and intricate landscape of financial markets, portfolio optimisation remains a formidable challenge for investors and asset managers. Conventional methods often struggle to capture the complex dynamics of market behaviour and align with diverse investor preferences. To address this, we propose an innovative framework, termed Diffusion-Augmented Reinforcement Learning (DARL), which synergistically integrates Denoising Diffusion Probabilistic Models (DDPMs) with Deep Reinforcement Learning (DRL) for portfolio management. By leveraging DDPMs to generate synthetic market crash scenarios conditioned on varying stress intensities, our approach significantly enhances the robustness of training data. Empirical evaluations demonstrate that DARL outperforms traditional baselines, delivering superior risk-adjusted returns and resilience against unforeseen crises, such as the 2025 Tariff Crisis. This work offers a robust and practical methodology to bolster stress resilience in DRL-driven financial applications.

Suggested Citation

  • Himanshu Choudhary & Arishi Orra & Manoj Thakur, 2025. "Diffusion-Augmented Reinforcement Learning for Robust Portfolio Optimization under Stress Scenarios," Papers 2510.07099, arXiv.org.
  • Handle: RePEc:arx:papers:2510.07099
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.07099
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    2. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    3. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    4. Arishi Orra & Aryan Bhambu & Himanshu Choudhary & Manoj Thakur & Selvaraju Natarajan, 2025. "Deep Reinforcement Learning for Investor-Specific Portfolio Optimization: A Volatility-Guided Asset Selection Approach," Papers 2505.03760, arXiv.org.
    5. Solveig Flaig & Gero Junike, 2022. "Scenario Generation for Market Risk Models Using Generative Neural Networks," Risks, MDPI, vol. 10(11), pages 1-28, October.
    6. Levy, Haim & Sarnat, Marshall, 1970. "International Diversification of Investment Portfolios," American Economic Review, American Economic Association, vol. 60(4), pages 668-675, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
    2. Hans Buehler & Blanka Horvath & Yannick Limmer & Thorsten Schmidt, 2025. "Uncertainty-Aware Strategies: A Model-Agnostic Framework for Robust Financial Optimization through Subsampling," Papers 2506.07299, arXiv.org.
    3. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    4. Gero Junike & Solveig Flaig & Ralf Werner, 2023. "Validation of machine learning based scenario generators," Papers 2301.12719, arXiv.org, revised Dec 2024.
    5. Bokai Cao & Saizhuo Wang & Xinyi Lin & Xiaojun Wu & Haohan Zhang & Lionel M. Ni & Jian Guo, 2025. "From Deep Learning to LLMs: A survey of AI in Quantitative Investment," Papers 2503.21422, arXiv.org.
    6. Kwame Addae‐Dapaah & Wilfred Tan Yong Hwee, 2009. "The unsung impact of currency risk on the performance of international real property investment," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 56-65, January.
    7. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    8. Szymon Kubiak & Tillman Weyde & Oleksandr Galkin & Dan Philps & Ram Gopal, 2023. "Improved Data Generation for Enhanced Asset Allocation: A Synthetic Dataset Approach for the Fixed Income Universe," Papers 2311.16004, arXiv.org.
    9. Wu, Kai & Zhu, Jingran & Xu, Mingli & Yang, Lu, 2020. "Can crude oil drive the co-movement in the international stock market? Evidence from partial wavelet coherence analysis," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    10. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    11. Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
    12. Justine Pedrono, 2016. "Currency Diversification of Banks: A Spontaneous Buffer Against Financial Losses," AMSE Working Papers 1611, Aix-Marseille School of Economics, France.
    13. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    14. Jiahua Xu & Yebo Feng & Daniel Perez & Benjamin Livshits, 2023. "Auto.gov: Learning-based Governance for Decentralized Finance (DeFi)," Papers 2302.09551, arXiv.org, revised May 2025.
    15. Gabriela Kov'av{c}ov'a & Georg Menz & Niket Patel, 2025. "Non-conservative optimal transport," Papers 2510.03332, arXiv.org.
    16. Mounira Chniguir & Mohamed Karim Kefi & Jamel Eddine Henchiri, 2017. "The Determinants of Home Bias in Stock Portfolio: An Emerging and Developed Markets Study," International Journal of Economics and Financial Issues, Econjournals, vol. 7(6), pages 182-191.
    17. Caio de Souza Barbosa Costa & Anna Helena Reali Costa, 2025. "Comparing Normalization Methods for Portfolio Optimization with Reinforcement Learning," Papers 2508.03910, arXiv.org.
    18. Cuoco, Domenico & Liu, Hong, 2000. "Optimal consumption of a divisible durable good," Journal of Economic Dynamics and Control, Elsevier, vol. 24(4), pages 561-613, April.
    19. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    20. Iordache Andreea & Tătaru Răzvan Ioan & Tătaru George-Cristian, 2025. "Revisiting the Dynamics of CEE Capital Markets," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 19(1), pages 1856-1874.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.07099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.