IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.05545.html
   My bibliography  Save this paper

Can language models boost the power of randomized experiments without statistical bias?

Author

Listed:
  • Xinrui Ruan
  • Xinwei Ma
  • Yingfei Wang
  • Waverly Wei
  • Jingshen Wang

Abstract

Randomized experiments or randomized controlled trials (RCTs) are gold standards for causal inference, yet cost and sample-size constraints limit power. Meanwhile, modern RCTs routinely collect rich, unstructured data that are highly prognostic of outcomes but rarely used in causal analyses. We introduce CALM (Causal Analysis leveraging Language Models), a statistical framework that integrates large language models (LLMs) predictions with established causal estimators to increase precision while preserving statistical validity. CALM treats LLM outputs as auxiliary prognostic information and corrects their potential bias via a heterogeneous calibration step that residualizes and optimally reweights predictions. We prove that CALM remains consistent even when LLM predictions are biased and achieves efficiency gains over augmented inverse probability weighting estimators for various causal effects. In particular, CALM develops a few-shot variant that aggregates predictions across randomly sampled demonstration sets. The resulting U-statistic-like predictor restores i.i.d. structure and also mitigates prompt-selection variability. Empirically, in simulations calibrated to a mobile-app depression RCT, CALM delivers lower variance relative to other benchmarking methods, is effective in zero- and few-shot settings, and remains stable across prompt designs. By principled use of LLMs to harness unstructured data and external knowledge learned during pretraining, CALM provides a practical path to more precise causal analyses in RCTs.

Suggested Citation

  • Xinrui Ruan & Xinwei Ma & Yingfei Wang & Waverly Wei & Jingshen Wang, 2025. "Can language models boost the power of randomized experiments without statistical bias?," Papers 2510.05545, arXiv.org.
  • Handle: RePEc:arx:papers:2510.05545
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.05545
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.05545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.