IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.04698.html
   My bibliography  Save this paper

The Bayesian Origin of the Probability Weighting Function in Human Representation of Probabilities

Author

Listed:
  • Xin Tong
  • Thi Thu Uyen Hoang
  • Xue-Xin Wei
  • Michael Hahn

Abstract

Understanding the representation of probability in the human mind has been of great interest to understanding human decision making. Classical paradoxes in decision making suggest that human perception distorts probability magnitudes. Previous accounts postulate a Probability Weighting Function that transforms perceived probabilities; however, its motivation has been debated. Recent work has sought to motivate this function in terms of noisy representations of probabilities in the human mind. Here, we present an account of the Probability Weighting Function grounded in rational inference over optimal decoding from noisy neural encoding of quantities. We show that our model accurately accounts for behavior in a lottery task and a dot counting task. It further accounts for adaptation to a bimodal short-term prior. Taken together, our results provide a unifying account grounding the human representation of probability in rational inference.

Suggested Citation

  • Xin Tong & Thi Thu Uyen Hoang & Xue-Xin Wei & Michael Hahn, 2025. "The Bayesian Origin of the Probability Weighting Function in Human Representation of Probabilities," Papers 2510.04698, arXiv.org.
  • Handle: RePEc:arx:papers:2510.04698
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.04698
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    3. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    4. Michael Woodford, 2020. "Modeling Imprecision in Perception, Valuation, and Choice," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 579-601, August.
    5. Benjamin Enke & Thomas Graeber, 2023. "Cognitive Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(4), pages 2021-2067.
    6. Miguel Barretto-García & Gilles Hollander & Marcus Grueschow & Rafael Polanía & Michael Woodford & Christian C. Ruff, 2023. "Individual risk attitudes arise from noise in neurocognitive magnitude representations," Nature Human Behaviour, Nature, vol. 7(9), pages 1551-1567, September.
    7. Michael Woodford, 2012. "Prospect Theory as Efficient Perceptual Distortion," American Economic Review, American Economic Association, vol. 102(3), pages 41-46, May.
    8. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    9. Cary Frydman & Lawrence J Jin, 2022. "Efficient Coding and Risky Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(1), pages 161-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moshe Levy, 2022. "An evolutionary explanation of the Allais paradox," Journal of Evolutionary Economics, Springer, vol. 32(5), pages 1545-1574, November.
    2. Herold, Florian & Netzer, Nick, 2023. "Second-best probability weighting," Games and Economic Behavior, Elsevier, vol. 138(C), pages 112-125.
    3. Niklas M. Witzig, 2024. "Cognitive Noise and Altruistic Preferences," Papers 2410.07647, arXiv.org, revised Jan 2025.
    4. Mel Win Khaw & Ziang Li & Michael Woodford, 2021. "Cognitive Imprecision and Small-Stakes Risk Aversion [Linear Mapping of Numbers onto Space Requires Attention]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(4), pages 1979-2013.
    5. Simone Ferrari-Toniolo & Leo Chi U. Seak & Wolfram Schultz, 2022. "Risky choice: Probability weighting explains independence axiom violations in monkeys," Journal of Risk and Uncertainty, Springer, vol. 65(3), pages 319-351, December.
    6. Mel Win Khaw & Ziang Li & Michael Woodford, 2022. "Cognitive Imprecision and Stake-Dependent Risk Attitudes," CESifo Working Paper Series 9923, CESifo.
    7. Yves Alarie & Georges Dionne, 2005. "Testing explanations of preference reversal: A model," Working Papers 05-2, HEC Montreal, Canada Research Chair in Risk Management.
    8. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    9. Foster, Gigi & Frijters, Paul & Schaffner, Markus & Torgler, Benno, 2018. "Expectation formation in an evolving game of uncertainty: New experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 154(C), pages 379-405.
    10. Che-Yuan Liang, 2017. "Optimal inequality behind the veil of ignorance," Theory and Decision, Springer, vol. 83(3), pages 431-455, October.
    11. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.
    12. Kerim Keskin, 2016. "Inverse S-shaped probability weighting functions in first-price sealed-bid auctions," Review of Economic Design, Springer;Society for Economic Design, vol. 20(1), pages 57-67, March.
    13. Ariane Charpin, 2018. "Tests des modèles de décision en situation de risque. Le cas des parieurs hippiques en France," Revue économique, Presses de Sciences-Po, vol. 69(5), pages 779-803.
    14. Bocqueho, Geraldine & Jacquet, Florence & Reynaud, Arnaud, 2011. "Expected Utility or Prospect Theory Maximizers? Results from a Structural Model based on Field-experiment Data," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114257, European Association of Agricultural Economists.
    15. Philip Bromiley, 2009. "A Prospect Theory Model of Resource Allocation," Decision Analysis, INFORMS, vol. 6(3), pages 124-138, September.
    16. Freudenreich, Hanna & Musshoff, Oliver & Wiercinski, Ben, "undated". "The Relationship between Farmers' Shock Experiences and their Uncertainty Preferences - Experimental Evidence from Mexico," GlobalFood Discussion Papers 256212, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
    17. Syngjoo Choi & Jeongbin Kim & Eungik Lee & Jungmin Lee, 2022. "Probability Weighting and Cognitive Ability," Management Science, INFORMS, vol. 68(7), pages 5201-5215, July.
    18. repec:diw:diwwpp:dp1879 is not listed on IDEAS
    19. Thomas Epper & Helga Fehr-Duda & Adrian Bruhin, 2011. "Viewing the future through a warped lens: Why uncertainty generates hyperbolic discounting," Journal of Risk and Uncertainty, Springer, vol. 43(3), pages 169-203, December.
    20. Mohammed Abdellaoui & Horst Zank, 2023. "Source and rank-dependent utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 949-981, May.
    21. Basieva, Irina & Khrennikova, Polina & Pothos, Emmanuel M. & Asano, Masanari & Khrennikov, Andrei, 2018. "Quantum-like model of subjective expected utility," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 150-162.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.04698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.